Refine Your Search

Topic

Author

Affiliation

Search Results

Standard

Combination Tail and Floodlamp for Industrial Equipment

2003-05-15
CURRENT
J94_200305
This SAE Standard provides performance and general design requirements and related test procedures for a combination tail and floodlamp for use on industrial wheeled equipment that may be operated on public roads.
Video

Strategies for ISO 26262 Functional Safety Compliance

2011-12-12
Software content within commercial vehicles is growing exponentially. Emissions requirements, multiplexed communications, hybrid-electric technologies, active suspensions and smart sensors are amongst the technologies driving the increase in embedded code. Presenter Christoph Braeuchle , MKS Software, Inc.
Video

Experience with Using Hardware-in-the-Loop Simulation for Validation of OBD in Powertrain Electronics Software

2011-12-05
These advanced checks have resulted in development of many new diagnostic monitors, of varying types, and a whole new internal software infrastructure to handle tracking, reporting, and self-verification of OBD related items. Due to this amplified complexity and the consequences surrounding a shortfall in meeting regulatory requirements, efficient and thorough validation of the OBD system in the powertrain control software is critical. Hardware-in-the-Loop (HIL) simulation provides the environment in which the needed efficiency and thoroughness for validating the OBD system can be achieved. A HIL simulation environment consisting of engine, aftertreatment, and basic vehicle models can be employed, providing the ability for software developers, calibration engineers, OBD experts, and test engineers to examine and validate both facets of OBD software: diagnostic monitors and diagnostic infrastructure (i.e., fault memory management).
Video

Impact of Model-Based Lithium-Ion Battery Control Strategy on Battery Sizing and Fuel Economy in Heavy-Duty HEVs

2011-12-05
Software usability is a quality attribute defined as ?the extent to which a product can be used by specified users to achieve specified goals with effectiveness, efficiency and satisfaction in a specific context of use? (ISO 9241, 1998), usability is also referred to as ?quality in use? (ISO 14598, 1999). Presenter Anabell Beltran, Stoneridge Electronics North America
Video

Multi Layered Maps for Enhanced Environmental Perception

2011-12-05
Traditionally, an in-vehicle map consists of only one type of data, tailored for a single user function. For example, the navigation maps contain spatial information about the roads. Presenter Peter Nordin, Link�ping University
Video

Model-Based Approach to Estimate Fuel Savings from Series Hydraulic Hybrid Vehicle: Model Development and Validation

2011-12-05
A simulation framework with a validated system model capable of estimating fuel consumption is a valuable tool in analysis and design of the hybrid vehicles. In particular, the framework can be used for (1) benchmarking the fuel economy achievable from alternate hybrid powertrain technologies, (2) investigating sensitivity of fuel savings with respect to design parameters (for example, component sizing), and (3) evaluating the performance of various supervisory control algorithms for energy management. Presenter Chinmaya Patil, Eaton Corporation
Video

Hydraulic Hybrid Powertrain-In-the-Loop Integration for Analyzing Real-World Fuel Economy and Emissions Improvements

2011-12-05
The paper describes the approach, addresses integration challenges and discusses capabilities of the Hybrid Powertrain-in-the-Loop (H-PIL) facility for the series/hydrostatic hydraulic hybrid system. We describe the simulation of the open-loop and closed-loop hydraulic hybrid systems in H-PIL and its use for concurrent engineering and development of advanced supervisory strategies. Presenter Fernando Tavares, Univ. of Michigan
Collection

Latest Advances for Commercial Vehicle Drivetrains, Powertrains, and Transmissions 2010

2010-09-27
This technical paper collection contains 53 technical papers. Topics covered include engine exhaust aftertreatment and integration; hybrid vehicle integration and optimization; powertrain and drivetrain NVH; advanced transmission and driveline component design; diesel engine system design; fuel economy; alternative fuels; and advanced engine component design.
Collection

Fuel Economy Improved & CO2 Reduction, Commercial Vehicle 2015

2015-09-29
This technical paper collection explores total vehicle and powertrain technologies for on and off-road commercial vehicles aimed at reduction of CO2 emissions through design, analysis, and testing techniques. The topics may include energy analysis/management/optimization, current and proposed emission legislation, certification techniques, powertrain integration, weight reduction, idle reduction, and friction/parasitic reduction.
Journal Article

Evaluation of the Injury Risks of Truck Occupants Involved in a Crash as a Result of Errant Truck Platoons

2020-03-11
Abstract Truck platooning comprises a number of trucks equipped with automated lateral and longitudinal vehicle control technology, which allows them to move in tight formation with short following distances. This study is an initial step toward developing an understanding of the occupant injury risks associated with the multiple sequential impacts between truck platoons and roadside safety barriers, regardless of whether the crash is associated with a malfunction of automated control or human operation. Full-scale crash impacts of a tractor-trailer platoon into a concrete bridge guardrail were simulated for a specific Test Level condition according to the Manual for Assessing Safety Hardware (MASH) standards. The model of the bridge barrier was developed based on its drawings, and material properties were assigned according to literature data.
Journal Article

Adaptive Transmission Shift Strategy Based on Online Characterization of Driver Aggressiveness

2018-06-04
Abstract Commercial vehicles contribute to the majority of freight transportation in the United States. They are also significant fuel consumers, with over 23% of fuel used in transportation in the United States. The gas price volatility and increasingly stringent regulation on greenhouse-gas emissions have driven manufacturers to adopt new fuel-efficient technologies. Among others, an advanced transmission control strategy, which can provide tangible improvement with low incremental cost. In the commercial sector, individual drivers have little or no interest in vehicle fuel economy, contrary to fleet owners. Aggressive driving behavior can greatly increase the real-world vehicle fuel consumption. However, the effectiveness of transmission calibration to match the shift strategy to the driving characteristics is still a challenge.
Journal Article

Electrifying Long-Haul Freight—Part II: Assessment of the Battery Capacity

2019-01-25
Abstract Recently, electric heavy-duty tractor-trailers (EHDTTs) have assumed significance as they present an immediate solution to decarbonize the transportation sector. Hence, to illustrate the economic viability of electrifying the freight industry, a detailed numerical model to estimate the battery capacity for an EHDTT is proposed for a route between Washington, DC, to Knoxville, TN. This model incorporates the effects of the terrain, climate, vehicular forces, auxiliary loads, and payload in order to select the appropriate motor and optimize the battery capacity. Additionally, current and near-future battery chemistries are simulated in the model. Along with equations describing vehicular forces based on Newton’s second law of motion, the model utilizes the Hausmann and Depcik correlation to estimate the losses caused by the capacity offset of the batteries. Here, a Newton-Raphson iterative scheme determines the minimum battery capacity for the required state of charge.
Journal Article

Empirical Investigation on the Effects of Rolling Resistance and Weight on Fuel Economy of Medium-Duty Trucks

2019-08-28
Abstract Vehicle rolling resistance and weight are two of the factors that affect fuel economy. The vehicle tire rolling resistance has a more significant influence than aerodynamics drags on fuel economy at lower vehicle speeds, particularly true for medium- and heavy-duty trucks. Less vehicle weight reduces inertia loads, uphill grade resistance, and rolling resistance. The influence of weight on the fuel economy can be considerable particularly in light- to medium-duty truck classes because the weight makes up a larger portion of gross vehicle weight. This article presents an empirical investigation and a numerical analysis of the influences of rolling resistance and weight on the fuel economy of medium-duty trucks. The experimental tests include various tires and payloads applied on a total of 21vehicle configurations over three road profiles. These tests are used to assess the sensitivity of rolling resistance and weight to the vehicle fuel economy.
Journal Article

Speed Planning and Prompting System for Commercial Vehicle Based on Real-Time Calculation of Resistance

2019-06-25
Abstract When commercial vehicles drive in a mountainous area, the complex road condition and long slopes cause frequent acceleration and braking, which will use 25% more fuel. And the brake temperature rises rapidly due to continuous braking on the long-distance downslopes, which will make the brake drum fail with the brake temperature exceeding 308°C [1]. Meanwhile, the kinetic energy is wasted during the driving progress on the slopes when the vehicle rolls up and down. Our laboratory built a model that could calculate the distance from the top of the slope, where the driver could release the accelerator pedal. Thus, on the slope, the vehicle uses less fuel when it rolls up and less brakes when down. What we do in this article is use this model in a real vehicle and measure how well it works.
Journal Article

Classification of Contact Forces in Human-Robot Collaborative Manufacturing Environments

2018-04-02
Abstract This paper presents a machine learning application of the force/torque sensor in a human-robot collaborative manufacturing scenario. The purpose is to simplify the programming for physical interactions between the human operators and industrial robots in a hybrid manufacturing cell which combines several robotic applications, such as parts manipulation, assembly, sealing and painting, etc. A multiclass classifier using Light Gradient Boosting Machine (LightGBM) is first introduced in a robotic application for discriminating five different contact states w.r.t. the force/torque data. A systematic approach to train machine-learning based classifiers is presented, thus opens a door for enabling LightGBM with robotic data process. The total task time is reduced largely because force transitions can be detected on-the-fly. Experiments on an ABB force sensor and an industrial robot demonstrate the feasibility of the proposed method.
Journal Article

Combined Battery Design Optimization and Energy Management of a Series Hybrid Military Truck

2018-10-31
Abstract This article investigates the fuel savings potential of a series hybrid military truck using a simultaneous battery pack design and powertrain supervisory control optimization algorithm. The design optimization refers to the sizing of the lithium-ion battery pack in the hybrid configuration. The powertrain supervisory control optimization determines the most efficient way to split the power demand between the battery pack and the engine. Despite the available design and control optimization techniques, a generalized mathematical formulation and solution approach for combined design and control optimization is still missing in the literature. This article intends to fill that void by proposing a unified framework to simultaneously optimize both the battery pack size and power split control sequence. This is achieved through a combination of genetic algorithm (GA) and Pontryagin’s minimum principle (PMP) where the design parameters are integrated into the Hamiltonian function.
Standard

Constant Speed Aerodynamic Procedure for Heavy Vehicles

2017-09-25
WIP
J3156
Develop and document an aerodynamic constant speed procedure for heavy vehicles that can accurately calculate the aerodynamic performance through the typical expected yaw angles during operation at highway speeds.
Journal Article

Fuel Consumption Track Tests for Tractor-Trailer Fuel Saving Technologies

2009-10-06
2009-01-2891
The objective of the project was to conduct controlled test-track studies of solutions for achieving higher fuel efficiency and lower greenhouse gas emissions in the trucking industry. Using vehicles from five Canadian fleets, technologies from 12 suppliers were chosen for testing, including aerodynamic devices and low rolling resistance tires. The participating fleets also decided to conduct tests for evaluating the impact on fuel consumption of vehicle speed, close-following between vehicles, and lifting trailer axles on unloaded B-trains. Other tests targeted comparisons between trans-container road-trains and van semi-trailers road-trains, between curtain-sided semi-trailers, trans-containers and van semi-trailers, and between tractors pulling logging semi-trailers loaded with tree-length wood and short wood. The impact of a heavy-duty bumper on fuel consumption and the influence of B5 biodiesel blend on fuel consumption were also assessed.
X