Refine Your Search

Search Results

Viewing 1 to 3 of 3
Technical Paper

Development of Urea SCR Systems for Large Diesel Engines

2011-09-13
2011-01-2204
EPA 2015 Tier IV emission requirements pose significant challenges to large diesel engine after treatment system development with respect to reducing exhaust emissions including HC, CO, NOx and Particulate Matter (PM). For a typical locomotive, marine or stationary generator engine with 8 to 20 cylinders and 2500 to 4500 BHP, the PM reduction target could be over 90% and NOx reduction target over 75% for a wide range of running conditions. Generally, HC, CO and PM reductions can be achieved by combining DOC, cDPF and active regeneration systems. NOx reduction can be achieved by injecting urea as an active reagent into the exhaust stream to allow NOx to react with ammonia per SCR catalysts, as the mainstream approach for on-highway truck applications.
Technical Paper

Overview of Large Diesel Engine Aftertreatment System Development

2012-09-24
2012-01-1960
The introduction of stringent EPA 2015 regulations for locomotive / marine engines and IMO 2016 Tier III marine engines initiates the need to develop large diesel engine aftertreatment systems to drastically reduce emissions such as SOx, PM, NOx, unburned HC and CO. In essence, the aftertreatment systems must satisfy a comprehensive set of performance criteria with respect to back pressure, emission reduction efficiency, mixing, urea deposits, packaging, durability, cost and others. Given multiple development objectives, a systematic approach must be adopted with top-down structure that addresses top-level technical directions, mid-level subsystem layouts, and bottom-level component designs and implementations. This paper sets the objective to provide an overview of system development philosophy, and at the same time touch specific development scenarios as illustrations.
Technical Paper

Development of an Integrated Box SCR System for China IV On-Highway Applications

2014-04-01
2014-01-1539
To satisfy China IV emissions regulations, diesel truck manufacturers are striving to meet increasingly stringent Oxides of Nitrogen (NOx) reduction standards. Heavy duty truck manufacturers demand compact urea SCR NOx abatement designs, which integrate injectors, NOx sensors and necessary components on SCR can in order to save packaging space and system cost. To achieve this goal, aftertreatment systems need to be engineered to achieve high conversion efficiencies, low back pressure, no urea deposit risks and good mechanical durability. Initially, a baseline Euro IV Urea SCR system is evaluated because of concerns on severe deposit formation. Systematic enhancements of the design have been performed to enable it to meet multiple performance targets, including emission reduction efficiency and low urea deposit risks via improved reagent mixing, evaporation, and distribution. Acoustic performance has been improved from the baseline system as well.
X