Refine Your Search

Search Results

Viewing 1 to 5 of 5
Technical Paper

EGR Strategies Pertaining to High Pressure and Low Pressure EGR in Heavy Duty CNG Engine to Optimize Exhaust Temperature and NOx Emissions

2021-09-22
2021-26-0114
CNG has proven to be a concrete alternative to gasoline and diesel fuel for sustained mobility. Due to stringent emission norms and sanctions being imposed on diesel fuel vehicles, OEMs have shifted their attention towards natural gas as an efficient and green fuel. Newly implemented BS VI emission norms in India have stressed on the reduction of Nitrogen Oxides (NOx) from the exhaust by almost 85% as compared to BS IV emission norms. Also, Indian Automotive market is fuel economy cautious. This challenges to focus on improving fuel economy but without increase in NOx emissions. Exhaust Gas Recirculation (EGR) has the potential to reduce the NOx emissions by decreasing the in-cylinder temperature. The objective of the paper is to model a CNG TCIC engine using 1D simulation in order to optimize the NOx emissions and maintain exhaust temperatures under failsafe limits.
Technical Paper

Optical Strain Measurement- Experimental Tool for Validating Sheet Metal Forming Analysis

2006-10-31
2006-01-3577
Automotive sheet metal components involve complex geometry and large surface areas. In addition to complex geometry, thrust for reduction of the new product development cycle demands for virtual simulation before prototyping. However in order to validate the simulation parameters, the numerical model needs to be experimentally verified. Conventional strain measurement techniques like Mylar tape, Traveling microscope are tedious and error prone for sheet metal forming analysis. Recently, optical strain measurement techniques are being used in sheet metal forming industry. Through this, strain measurement is more accurate, less time consuming and repeatable. This paper discusses a case study in which the analysis results of an automotive sheet metal component are experimentally validated by circular grid analysis using an optical strain measurement method. The circular grids are marked in the sheet metal blanks by screen-printing.
Technical Paper

Correlation Study of Oil Strainer Mounting Bracket for Dynamic Loading

2013-11-27
2013-01-2782
Oil strainer is used in engine oil sump, which prevents dirt, scale and other particle from clogging downstream orifice. In this paper, dynamic analysis was carried out using FEA tool. As a part of dynamic analysis, constrained modal analysis and frequency response (steady state dynamics) analysis was done. Frequency response analysis was done for different engine exciting frequency at different service load (vibration amplitude). Modal superposition method is used for doing frequency response analysis and load is applied as base excitation. The natural frequency from modal analysis and stress response from frequency response analysis is well correlated with test results. Based on achieved good correlation with test, several design modification could be carried out in CAE before finalizing the final design.
Technical Paper

Impact of Intake Geometry on EGR Homogeneity in Intake Ports of a Multi-cylinder Diesel Engine

2015-09-29
2015-01-2889
In heavy duty diesel engines, exhaust gas recirculation is often preferred choice to contain NOx emissions, in this a part of exhaust gas is tapped from exhaust manifold or later and recirculated to air intake pipe before intake manifold. Critical to such engines is the design of air intake pipe and intake manifold combination in view of proper exhaust gas mixing with intake air. The variation in exhaust gas mass fraction at each intake port should be as minimal as possible and this variation must be contained within +/− 10% band to have a minimal cylinder to cylinder variation of pollutants. Exhaust gas homogeneity for various intake configurations was studied using three-dimensional computational fluid dynamics for a 4 cylinder, 3.8 L, Diesel fuelled, common rail, turbocharged and intercooled heavy duty engine. Flow field was studied in the computational domain from the point before exhaust gas mixing till all the four intake ports.
Journal Article

Effect of CCV and OCV System in Heavy Duty CNG Engine on the Particulate Emissions

2021-09-22
2021-26-0116
Due to increasing pollution and climatic cries, newly implemented BS-VI emission norms in India have stressed the reduction of emission. For which many automobiles have been shifted to alternate fuels like CNG. Also, the Indian Automotive market is fuel economy cautious. This challenges to focus on improving fuel economy but without an increase in emissions. Crankcase blow-by gases can be an important source of particulate emission as well as other regulated and unregulated emissions. They can also contribute to the loss of lubricating oil and fouling of surface and engine components. Closed Crankcase Ventilation (CCV) or Open Crankcase Ventilation (OCV) is capable to reduce particulate emissions by removing the oil mist that is caused mainly due to blow-by in the combustion chamber. This paperwork is focused, to measure the effectiveness of the CCV and OCV systems on the engine-out emissions, primarily on the particulate emissions.
X