Refine Your Search

Topic

Search Results

Standard

MEASUREMENT OF EXTERIOR NOISE PRODUCED BY AIRCRAFT AUXILIARY POWER UNITS (APUs) AND ASSOCIATED EQUIPMENT DURING GROUND OPERATION

1979-03-01
HISTORICAL
ARP1307
Test procedures are described for measuring noise at specific locations (passenger and cargo doors, and servicing positions) and for conducting general noise surveys around aircraft. Requirements are identified with respect to instrumentation; acoustic and atmospheric environment; data acquisition, reduction and presentation, and such other information as is needed for reporting the results. Recommended procedures involve recording data on magnetic tape for subsequent processing. The use of tape-recorder/time-integrating analyzer systems avoids the need to average by eye the variations associated with manual readings from sound level meters and octave band analyzers and therefore yields more accurate results. This document makes no provision for predicting APU noise from basic engine characteristics, nor for measuring noise of more than one aircraft operating at the same time.
Standard

MEASUREMENT OF ROTORCRAFT INTERIOR SOUND PRESSURE LEVELS

1993-05-01
HISTORICAL
ARP1964
Satisfactory measurements of noise in personnel-occupied rotorcraft cabins may require test techniques different from those prescribed for other types of aircraft (ARP1323) because rotorcraft operate under significantly different flight conditions. Recommendations of this ARP apply to the recording of acoustical data on magnetic tape and the subsequent processing and analysis of the recorded data.
Standard

Measurement of Rotorcraft Interior Sound Pressure Levels

2012-08-16
CURRENT
ARP1964A
Satisfactory measurements of noise in personnel-occupied rotorcraft cabins may require test techniques different from those prescribed for other types of aircraft (ARP1323) because rotorcraft operate under significantly different flight conditions. Recommendations of this ARP apply to the recording of acoustical data on magnetic tape and the subsequent processing and analysis of the recorded data.
Standard

QUANTITIES FOR DESCRIPTION OF THE ACOUSTICAL ENVIRONMENT OF THE INTERIOR OF AIRCRAFT

1991-03-15
HISTORICAL
ARP4245
This Aerospace Recommended Practice (ARP) defines quantities that may be used to describe various attributes of the sound field in the interior of aircraft. For a particular aircraft, or for a specific situation in a particular aircraft, it may not be necessary to utilize all the quantities included here to provide an adequate description of an aircraft's interior acoustical environment.
Standard

Quantities for Description of the Acoustical Environment of the Interior of Aircraft

2012-08-16
CURRENT
ARP4245A
This Aerospace Recommended Practice (ARP) defines quantities that may be used to describe various attributes of the sound field in the interior of aircraft. For a particular aircraft, or for a specific situation in a particular aircraft, it may not be necessary to utilize all the quantities included here to provide an adequate description of an aircraft's interior acoustical environment.
Standard

Procedure for the Calculation of Aircraft Emissions

2009-07-27
CURRENT
AIR5715
This AIR describes procedures for calculating emissions resulting from the main engines of commercial jet and turboprop aircraft through all modes of operation for all segments of a flight. Piston engine aircraft emissions are not included in this AIR. Some information about piston engine aircraft emissions can be found in FOCA 2007. The principal purpose of the procedures is to assist model developers in calculating aircraft emissions in a consistent and accurate manner that can be used to address various environmental assessments including those related to policy decisions and regulatory requirements.
Standard

Determination of Distance from Ground Observer to Aircraft for Acoustic Tests

2022-11-18
CURRENT
AIR902A
This document describes a practical system for a user to determine observer-to-aircraft distances. These observer-to-aircraft distances can be either closest point of approach (CPA) distances during field measurements or overhead distances during acoustic certification tests. The system uses a digital camera to record an image of the subject aircraft. A method of using commercial software to obtain the distance from such an image is presented. Potential issues which may affect accuracy are discussed.
Standard

HELICOPTER EXTERNAL NOISE ESTIMATION

1989-05-01
HISTORICAL
AIR1989
This method estimates noise for both single and tandem main rotor helicopters except for approach where it applies to single rotor designs only. It does not apply to coaxial rotor designs. Application is limited to helicopters powered by turbo-shaft engines and does not apply to helicopters powered by reciprocating engine, tip jets or other types of power plants. It provides noise information using basic operating and geometric information available in the open literature. To keep the method simple, it generates A-weighted sound levels, precluding the necessity for spectral details. The method prescribes estimates for typical helicopter operations; certain maneuvers may produce noise levels different from those estimated. Estimates are given for the maximum sound levels at 4 ft (1.2 m) height above the ground. For aircraft in forward flight, the estimate is given for an aircraft at an altitude of 500 ft (152 m) on a path directly over the observer.
Standard

HELICOPTER EXTERNAL NOISE ESTIMATION

1992-12-18
HISTORICAL
AIR1989A
This method estimates noise for both single and tandem main rotor helicopters except for approach where it applies to single rotor designs only. It does not apply to coaxial rotor designs. Due to lack of available data, application of the method has not been evaluated for application to tiltrotor, or other VTOL configurations, when operating in the helicopter mode. Since there are substantial differences between helicopter rotors included in the data base, and tiltrotor rotors, application to VTOL configurations other than helicopters is not advised. Application is limited to helicopters powered by turboshaft engines and does not apply to helicopters powered by reciprocating engine, tip jets or other types of power plants. It provides noise information using basic operating and geometric information available in the open literature. To keep the method simple, it generates A-weighted sound levels, and Sound Exposure Levels precluding the necessity for spectral details.
Standard

Helicopter External Noise Estimation

2012-08-16
CURRENT
AIR1989B
This method estimates noise for both single and tandem main rotor helicopters except for approach where it applies to single rotor designs only. It does not apply to coaxial rotor designs. Due to lack of available data, application of the method has not been evaluated for application to tiltrotor, or other VTOL configurations, when operating in the helicopter mode. Since there are substantial differences between helicopter rotors included in the data base, and tiltrotor rotors, application to VTOL configurations other than helicopters is not advised. Application is limited to helicopters powered by turboshaft engines and does not apply to helicopters powered by reciprocating engine, tip jets or other types of power plants. It provides noise information using basic operating and geometric information available in the open literature. To keep the method simple, it generates A-weighted sound levels, and Sound Exposure Levels precluding the necessity for spectral details.
Standard

TYPE MEASUREMENTS OF AIRCRAFT INTERIOR SOUND PRESSURE LEVELS IN CRUISE

1978-02-01
HISTORICAL
ARP1323
Recommendations of this Aerospace Recommended Practice (ARP) are not intended to satisfy the more detailed and stringent requirements of aircraft design development. Also, they may not be directly applicable to general or private aviation aircraft where special restraints on measurement locations and procedures may exist. However, many of the principles and standards discussed may apply to these aircraft. The recommended procedure for sound pressure level measurements in aircraft involves the recording of data on magnetic tape for subsequent processing and analysis after the flight. Sound level meter/octave-band analyzer measurements, because of inherent inaccuracies associated with manual data readings, are not as precise as those obtained from a tape-recorder/time integrating analyzer system and are, therefore, precluded from this recommended practice.
Standard

TYPE MEASUREMENTS OF AIRPLANE INTERIOR SOUND PRESSURE LEVELS DURING CRUISE

1990-08-01
HISTORICAL
ARP1323A
The primary measurement procedure recommended in this ARP includes the recording of sound pressure signals in the interior of an airplane during steady state cruise conditions with analysis after the flight into octave band (or one-third octave band) sound pressure levels.
X