Refine Your Search

Search Results

Viewing 1 to 8 of 8
Technical Paper

Application of Kinematic Concepts to Side Impact Injury Analysis

1990-02-01
900375
An understanding of fundamental kinematic relationships among the several deforming surfaces of side-impacting bullet and target vehicle, occupant protection system and occupant is fundamental to rational design of crash injury counter-measures. Unfortunately, such understanding is not easy to achieve. Side impacts address the full range of bodily contacts and injuries in a way that challenges analysis. Each bodily area and organ requires individual consideration for adequate injury protection. This paper presents a simplified graphical analysis of occupant kinematics and injury exposure applied specifically to the NHTSA-proposed crabbed moving deformable barrier (MDB) compartment impact, as described in NHTSA's Notice of Proposed Rulemaking (NPRM) for Federal Motor Vehicle Safety Standard (FMVSS) 214, issued in January of 1988 [NHTSA 1988 (1)*]. Projections are offered regarding the potential of thoracic injury counter-measures.
Technical Paper

Design, Development and Testing of a Load-Sensing Crash Dummy Face

1984-02-01
840397
This project covers one facet of a program to develop a mechanical model for characterizing the time history of local forces on the zygomatic, maxillary and mandible regions of the human face during a frontal collision. Two mechanical devices to measure the forces on crash dummies during testing were designed, constructed and tested. The devices employed cantilever beams equipped with strain gauges. Both devices were subjected to a series of drop tests onto various materials. Time histories were compared to those obtained from cadaver experiments. While the data obtained from this testing appears to be similar to the cadaver data, further improvements and modifications will make the model much more useful.
Technical Paper

A Load Sensing Face Form for Automotive Collision Crash Dummy Instrumentation

1986-02-24
860197
This paper summarizes the development of an Instrumented faceform which can record time histories of impact-related pressures at fifty-two locations over the entire face of a Hybrid 2 crash dummy skull. Pressures are measured by using piezo-electric, thin-plastic films; a high-speed, multiplex data acquisition system; signal conditioning; a software-controlled computerized data reduction and recording scheme; and a submergence calibration technique. The construction of the modified dummy face and the calibration gear are discussed. Examples of preliminary laboratory impact test results are presented. Theory and techniques relating to signal processing software, microprocessor controlled random-access-memory data-retrieval system and system calibration are also discussed. It is hoped that this tool, now undergoing final development and verification testing, will find extensive use in the evaluation and safety-related design of vehicle interiors and occupant restraints.
Technical Paper

Facial Impact Response — A Comparison of the Hybrid III Dummy and Human Cadaver

1988-10-01
881719
Results indicate the need for a redesigned Hybrid III face capable of accurate force and acceleration measurements. New instrumentation and methods for facial fracture detection were developed, including the application of acoustic emissions. Force/ deflection information for the human cadaver head and the Hybrid III ATD were generated for the frontal, zygomatic, and maxillary regions.
Technical Paper

Crash Protection in Near-Side Impact - Advantages of a Supplemental Inflatable Restraint

1989-02-01
890602
Collision Safety Engineering, Inc. (CSE), has developed a test prototype system to protect occupants during lateral impacts. It is an inflatable system that offers the potential of improved protection from thoracic, abdominal and pelvic injury by moving an impact pad into the occupant early in the crash. Further, it shows promise for head and neck protection by deployment of a headbag that covers the major target areas of B-pillar, window space, and roofrail before head impact. Preliminary static and full-scale crash tests suggest the possibility of injury reduction in many real-world crashes, although much development work remains before the production viability of this concept can be established. A description of the system and its preliminary testing is preceded by an overview of side impact injury and comments on the recent NHTSA Rule Making notices dealing with side-impact injury.
Technical Paper

Force/Deflection and Fracture Characteristics of the Temporo-parietal Region of the Human Head

1991-10-01
912907
Impact tests were conducted on thirty-one unembalmed human cadaver heads. Impacts were delivered to the temporo-parietal region of fixed cadavers by two, different sized, flat-rigid impactors. Yield fracture force and stiffness data for this region of the head are presented. Impactor surfaces consisted of a 5 cm2 circular plate and a 52 cm2 rectangular plate. The average stiffness value observed using the circular impactor was 1800 N/mm, with an average bone-fracture-force level of 5000 N. Skull stiffness for the rectangular impactor was 4200 N/mm, and the average fracture-force level was 12,500 N.
Technical Paper

Friction Applications in Accident Reconstruction

1983-02-01
830612
The determination of appropriate friction coefficient values is an important aspect of accident reconstruction. Tire-roadway friction values are highly dependent on a variety of physical factors. Factors such as tire design, side force limitations, road surface wetness, vehicle speed, and load shifting require understanding if useful reconstruction calculations are to be made. Tabulated experimental friction coefficient data are available, and may be improved upon in many situations by simple testing procedures. This paper presents a technical review of basic concepts and principles of friction as they apply to accident reconstruction and automobile safety. A brief review of test measurement methods is also presented, together with simple methods of friction measurement to obtain more precise values in many situations. This paper also recommends coefficient values for reconstruction applications other than tire- roadway forces.
Technical Paper

A Perspective on Side Impact Occupant Crash Protection

1990-02-01
900373
The NHTSA notices of proposed rulemaking on side impact protection have focused worldwide attention on one of the most difficult and frustrating efforts in automobile crash safety. Traditional vehicle design has evolved obvious structural contrasts between the side of the struck vehicle and the front of the striking vehicle. Protection of near-side occupants from intruding door structure is a most perplexing engineering challenge. Much useful and insightful engineering work has been done in conjunction with NHTSA's proposed rulemaking. However, there are many major engineering issues which demand further definition before reasonable side impact rulemaking test criteria can be finalized. This paper reviews recent findings which characterize the human factors, biomechanics, and occupant position envelope of the typical side impact crash victim.
X