Refine Your Search

Topic

Author

Affiliation

Search Results

Standard

Contamination definition for Fuel Tank Inerting Systems

2016-02-01
WIP
AIR6374
The scope of this document is to provide a guidance of the common contamination types and their concentrations in order to size FTIS components and characterize its performance on generic commercial aircraft.
Standard

Adapter, Closed-Circuit Fuel Servicing

2021-03-11
WIP
AS6848
Aircraft-mounted Closed Circuit Refueling receiver adapter – Definition of standard interface dimensions for adapter which interfaces with MIL-PRF-52747F Nozzle.
Standard

Fuel Tank Inerting System Ground and Flight Test Methodology Recommended Practice

2015-05-19
WIP
ARP6063
This SAE Aerospace Recommended Practice (ARP) provides guidance for the verification and certification of a “commercial” fixed wing aircraft fuel tank inerting system (FTIS) and will provide technical references and data regarding ground and flight testing of an FTIS. The intent of this ARP is to address issues associated with the verification requirements based on current regulatory guidance per AC25.981-2C
Journal Article

Identification and Robust Control of LPG Fuel Supply System

2009-04-20
2009-01-1025
This paper proposes a new returnless LPG fuel supply system designed to increase the efficiency of current LPG engines. With a conventional engine fuel supply system, the fuel pump is driven at a certain speed to pressurize the fuel to an excessive level, and excess fuel that is discharged from the fuel pump but not injected from the injector is returned to the fuel tank via a pressure regulator and a return line. This arrangement keeps the pressure in the fuel supply line at a constant level. Accordingly, during engine idling, fuel cut-off or other times when very little or no fuel is injected from the injector, nearly all the fuel discharged from the fuel pump is returned to the fuel tank via the pressure regulator and return line. Therefore, the energy (electric power) applied to drive the fuel pump is wastefully consumed. Moreover, returning a large amount of excess fuel to the fuel tank can raise the fuel temperature in the tank, causing the fuel to evaporate.
Journal Article

Development of an Enhanced Brine Dewatering System

2009-07-12
2009-01-2486
Water recovery is essential for long-duration space exploration transit and outpost missions. Primary stage wastewater recovery systems partially satisfy this need, and generate concentrated wastewater brines that are unusable without further processing. The Enhanced Brine Dewatering System (EBDS) is being developed to allow nearly complete recovery of water from Lunar Outpost wastewater brines. This paper describes the operation of the EBDS and discusses the development and testing of the major functional materials, components, and subsystems, including the wastewater brine ersatz formulations that are used in subsystem testing. The assembly progress of the EBDS full system prototype is also discussed, as well as plans for testing the prototype hardware.
Journal Article

Deterioration of B20 from Compression Ignition Engine Operation

2010-10-25
2010-01-2120
Biodiesel has been widely accepted as an alternative for fossil-derived diesel fuel for use in compression ignition (CI) engines. Poor oxidative stability and cold flow properties restrict the use of biodiesel beyond current B20 blend levels (20% biodiesel in 80% ULSD) for vehicle applications. Maintaining the properties of B20 as specified by ASTM D7476-08 is important because, once out of spec, B20 may cause injector coke formation, fuel filter plugging, increased exhaust emissions, and overall loss of engine performance. While the properties of fresh B20 may be within the specifications, under engine operating and longer storage conditions B20 could deteriorate. In a diesel engine, the fuel that goes to the injector and does not enter the cylinder is recycled back to the fuel tank. The re-circulated fuel returns to the fuel tank at an elevate temperature, which can cause thermal oxidation.
Journal Article

Development of Exhaust and Evaporative Emissions Systems for Toyota THS II Plug-in Hybrid Electric Vehicle

2010-04-12
2010-01-0831
Exhaust and evaporative emissions systems have been developed to match the characteristics and usage of the Toyota THS II plug-in hybrid electric vehicle (PHEV). Based on the commercially available Prius, the Toyota PHEV features an additional external charging function, which allows it to be driven as an electric vehicle (EV) in urban areas, and as an hybrid electric vehicle (HEV) in high-speed/high-load and long-distance driving situations. To reduce exhaust emissions, the conventional catalyst warm up control has been enhanced to achieve emissions performance that satisfies California's Super Ultra Low Emissions Vehicle (SULEV) standards in every state of battery charge. In addition, a heat insulating fuel vapor containment system (FVS) has been developed using a plastic fuel tank based on the assumption that such a system can reduce the diffusion of vapor inside the fuel tank and the release of fuel vapor in to the atmosphere to the maximum possible extent.
Journal Article

Optimization of Test Parameters and Analysis Methods for Fuel Tank Slosh Noise

2013-05-13
2013-01-1961
As the interior sound levels in cabin compartments of passenger vehicles continue to get quieter, noises from various sources which previously were not objectionable can become an issue. One such source is the “slosh noise” from liquid movement within fuel tanks. Vehicle manufacturers, responding to the phenomena, have turned to their suppliers and worked with them to establish robust test and analysis methods to characterize the NVH performance of their fuel storage and delivery systems. Test facilities have recently made great advancements in the capability to measure and characterize “fuel slosh noise” in tanks. However, the industry today lacks standardized procedures to apply to the issue, including defining test parameters and analysis methods (both of which are complex because of the time-domain nature of slosh events).
Journal Article

Investigation and Development of Fuel Slosh CAE Methodologies

2014-04-01
2014-01-1632
When a vehicle with a partially filled fuel tank undergoes sudden acceleration, braking, turning or pitching motion, fuel sloshing is experienced. It is important to establish a CAE methodology to accurately predict slosh phenomenon. Fuel slosh can lead to many failure modes such as noise, erroneous fuel indication, irregular fuel supply at low fuel level and durability issues caused by high impact forces on tank surface and internal parts. This paper summarizes activities carried out by the fuel system team at Ford Motor Company to develop and validate such CAE methodology. In particular two methods are discussed here. The first method is Volume Of Fluid (VOF) based incompressible multiphase Eulerian transient CAE method. The CFD solvers used here are Star CD and Star CCM+. The second method incorporates Fluid-Structure interaction (FSI) using Arbitrary Lagrangian-Eulerian (ALE) formulation.
Journal Article

Impact and Manufacturing Defect Visualization of Space Launcher Aluminum Liner/Filament Wound Composite Fuel Tank using Ultrasonic Propagation Imaging System

2013-09-17
2013-01-2256
We applied ultrasonic propagation imaging (UPI) system for rapid and reliable quality control of fuel tanks for a space launcher. The fuel tank is an aluminum-lined CFRP propellant tank. The UPI system uses Q-switched laser (QL) to generate ultrasonic wave on the test specimen, and laser mirror scanner (LMS) to control the laser impinging point that scans the area of interest with high speed. Each ultrasonic wave generated by laser impinging was received by a piezoelectric sensor with coordinate information of the scanned area. After ultrasonic propagation image processing, results with impact damage and manufacturing defect information of the fuel tank were presented.
Journal Article

The Impact upon Applicability of Metal Fuel Tank Using Different Biodiesel

2015-04-14
2015-01-0521
With the development of world economy, the shortage in the supply of oil energy as well as the greenhouse effect have become a public concern around the world. The application of biodiesel on vehicle transportation has become the focus of development in many countries. Biodiesel, Fatty Acid Methyl Esters (FAME), is made during the process of transesterification of the animal and vegetable oils. Compared with fossil diesel, biodiesel has some characteristics, such as organic acid, higher water saturation, and oxygen content. From the results of the literatures [1] to [5], it showed that biodiesel would cause the inflation of some plastic and flexible products and the corrosion of metal materials. Metal fuel tanks have the characteristics of high flammability, high impact resistance, and good workability and are often used in commercial vehicles. The corrosion of metal materials is a natural chemical change and it can be influenced by the environment.
Technical Paper

Investigations of Emission Reduction Potential of Diesel-Methanol Blends in a Heavy-Duty Genset Engine

2021-09-22
2021-26-0104
One of the most promising fuel alternatives for Diesel is Methanol. The fuel is regarded advantageous owing to the easy availability of raw materials for its production, its low cost and high Oxygen content that has potential to reduce emissions of smoke, CO and PM. Methanol as a fuel blend with Diesel is non-viable as they are not readily miscible with each other. This paper expounds the engine performance and emission evaluation of blending Methanol with Diesel by using two methods that aid in overcoming phase separation. The experiments were performed in two stages. In the first stage, investigation of phase stabilization of Methanol in Diesel with suitable additive concentration was performed. This was performed to determine the optimum additive and its concentration for a Methanol share of up to 25% in Diesel-Methanol blends for a stabilization period of 30 days.
Technical Paper

Active Fuelling of a Passenger Car Sized Pre-Chamber Ignition System with Gaseous Components of Gasoline

2020-09-15
2020-01-2045
Homogeneous lean or diluted combustion can significantly increase the efficiency of spark ignition engines. Active fuelled pre-chamber ignition systems can overcome the problem that common spark ignitions systems are incapable to ignite strongly diluted mixtures. A small portion of the charge is burned in a separated chamber, which is connected to the main chamber by multiple small orifices. The combustion inside the pre-chamber generates hot gases, which penetrate into the main chamber and ignite the diluted charge on multiple sites. Active pre-chamber ignition systems feature a separate fuelling or scavenging system in addition to the one of the main combustion chambers. Preferably, gaseous fuel is used for the pre-chamber fuelling allowing better dosing accuracy and mixture preparation inside the pre-chamber.
Technical Paper

Methodology and Results of F-34 Fuel Impact on the Reliability of the Engine Injection System on the Non-Engine-Based Test Stand

2020-09-15
2020-01-2261
The study of the F-34 aviation fuel used to power a diesel engine requires an extensive testing programme be carried out in the steady and transient states of the engine operation. The researches of the engines are expensive therefore, the tests can be also performed on the non-engine-based stand at a lower price. The design of the non-engine-based test stand and the methodology of the engine injection system testing follow the AEP-5 qualifying test has been described in the paper. The measurement methods used on the stand and the selected measurement results are presented. The tests have included checking the changes of three basic sets of the injection systems that may be subject to wear during the operation of the system. This applies to the following assemblies: jet needle - injection nozzle body, delivery valve plug - carrier, injection pump plunger and barrel.
Technical Paper

A Vehicle Level Transient Thermal Analysis of Automotive Fuel Tanks

2020-04-14
2020-01-1342
Maintaining the fuel temperature and fuel system components below certain values is an important design objective. Predicting these temperatures is therefore one of the key parts of the vehicle’s thermal management process. One of the physical processes affecting fuel tank temperature is fuel vaporization, which is controlled by the vapor pressure in the tank, fuel composition and fuel temperature. Models are developed to enable the computation of the fuel temperature, fuel vaporization rate in the tank, fuel temperatures along the fuel supply lines, and follow its path to the charcoal canister and into the engine intake. For diesel fuel systems where a fuel return line is used to return excess fluid back to the fuel tank, an energy balance will be considered to calculate the heat added from the high-pressure pump and vehicle under-hood and underbody.
Technical Paper

Performance Evaluation of Degas Tank

2021-09-22
2021-26-0475
This paper presents the free surface behaviour of liquid while degas tank bottle is in service. The liquid in the degas tank is subjected to exceed the mean line in the service and the fluid levels in all chambers varies as there is continuous movement and sloshing in the fluid. The objective of this work is to optimize the baffle design such that the fluid level in the tank does not exceed the mean line in service and fluid in the all chambers will be maintained at same level. The scope of work is also to enhance the tank baffles which will further dampen the fluid sloshing and the fluid de-aeration should be done effectively to avoid any possible structural damage. The simulation of liquid free surface behaviour is done using commercial CFD software. A numerical model is developed based on Volume of Fluid (VOF) technique to track the free surface motion of liquid. The explicit time discretization scheme is employed to solve the volume fraction equation.
Journal Article

Development of a New Pressure Measurement Technique and PIV to Validate CFD for the Aerodynamics of Full-scale Vehicles

2016-04-05
2016-01-1623
In the early stages of aerodynamic development of commercial vehicles, the aerodynamic concept is balanced with the design concept using CFD. Since this development determines the aerodynamic potential of the vehicle, CFD with high accuracy is needed. To improve its accuracy, spatial resolution of CFD should be based on flow phenomenon. For this purpose, to compare aerodynamic force, pressure profile and velocity vector map derived from CFD with experimental data is important, but there are some difficulties to obtain pressure profile and velocity vector map for actual vehicles. At the point of pressure measurement for vehicles, installation of pressure taps to the surface of vehicle, i.e., fuel tank and battery, is a problem. A new measurement method developed in this study enables measurement of surface pressure of any desired points. Also, the flexibility of its shape and measuring point makes the installation a lot easier than the conventional pressure measurement method.
Journal Article

Impact of a Diesel High Pressure Common Rail Fuel System and Onboard Vehicle Storage on B20 Biodiesel Blend Stability

2016-04-05
2016-01-0885
Adoption of high-pressure common-rail (HPCR) fuel systems, which subject diesel fuels to higher temperatures and pressures, has brought into question the veracity of ASTM International specifications for biodiesel and biodiesel blend oxidation stability, as well as the lack of any stability parameter for diesel fuel. A controlled experiment was developed to investigate the impact of a light-duty diesel HPCR fuel system on the stability of 20% biodiesel (B20) blends under conditions of intermittent use and long-term storage in a relatively hot and dry climate. B20 samples with Rancimat induction periods (IPs) near the current 6.0-hour minimum specification (6.5 hr) and roughly double the ASTM specification (13.5 hr) were prepared from a conventional diesel and a highly unsaturated biodiesel. Four 2011 model year Volkswagen Passats equipped with HPCR fuel injection systems were utilized: one on B0, two on B20-6.5 hr, and one on B20-13.5 hr.
Journal Article

Advancements and Opportunities for On-Board 700 Bar Compressed Hydrogen Tanks in the Progression Towards the Commercialization of Fuel Cell Vehicles

2017-03-28
2017-01-1183
Fuel cell vehicles are entering the automotive market with significant potential benefits to reduce harmful greenhouse emissions, facilitate energy security, and increase vehicle efficiency while providing customer expected driving range and fill times when compared to conventional vehicles. One of the challenges for successful commercialization of fuel cell vehicles is transitioning the on-board fuel system from liquid gasoline to compressed hydrogen gas. Storing high pressurized hydrogen requires a specialized structural pressure vessel, significantly different in function, size, and construction from a gasoline container. In comparison to a gasoline tank at near ambient pressures, OEMs have aligned to a nominal working pressure of 700 bar for hydrogen tanks in order to achieve the customer expected driving range of 300 miles.
X