Refine Your Search

Topic

Search Results

Standard

Hard Drawn Carbon Steel Valve Spring Quality Wire and Springs

1994-08-01
CURRENT
J172_199408
This SAE Recommended Practice covers the mechanical and chemical requirements of the best quality hard drawn carbon steel spring wire used for the manufacture of engine valve springs and other springs requiring high fatigue properties. It also covers the basic material and processing requirements of springs fabricated from this wire.
Standard

HARD DRAWN CARBON STEEL VALVE SPRING QUALITY WIRE AND SPRINGS

1988-12-01
HISTORICAL
J172_198812
This SAE Recommended Practice covers the mechanical and chemical requirements of the best quality hard drawn carbon steel spring wire used for the manufacture of engine valve springs and other springs requiring high fatigue properties. It also covers the basic material and processing requirements of springs fabricated from this wire.
Standard

OIL TEMPERED CHROMIUM-VANADIUM VALVE SPRING QUALITY WIRE AND SPRINGS

1988-12-01
HISTORICAL
J132_198812
This SAE Recommended Practice covers the mechanical and chemical requirements of oil tempered chromium-vanadium valve spring quality wire used for the manufacture of engine valve springs and other springs used at moderately elevated temperatures and requiring high fatigue properties. It also covers the basic material and processing requirements of spring fabricated from this wire.
Standard

OIL-TEMPERED CHROMIUM-VANADIUM VALVE SPRING QUALITY WIRE AND SPRINGS

1994-06-01
HISTORICAL
J132_199406
This SAE Recommended Practice covers the mechanical and chemical requirements of oil-tempered chromium-vanadium valve spring quality wire used for the manufacture of engine valve springs and other springs used at moderately elevated temperatures and requiring high fatigue properties. It also covers the processing requirements of spring fabricated from this wire.
Standard

Oil-Tempered Chromium-Vanadium Valve Spring Quality Wire and springs

1998-06-01
CURRENT
J132_199806
This SAE Recommended Practice covers the mechanical and chemical requirements of oil-tempered chromium-vanadium valve spring quality wire used for the manufacture of engine valve springs and other springs used at moderately elevated temperatures and requiring high fatigue properties. It also covers the processing requirements of spring fabricated from this wire.
Standard

OIL TEMPERED CHROMIUM - SILICON ALLOY STEEL WIRE AND SPRINGS

1988-12-01
HISTORICAL
J157_198812
This SAE Recommended Practice covers the mechanical and chemical requirements of oil tempered chromium silicon alloy steel wire used for the manufacture of springs requiring resistance to set when used at moderately elevated temperatures. It also covers the basic material and processing requirements of springs fabricated from this wire.
Standard

OIL-TEMPERED CHROMIUM—SILICON ALLOY STEEL WIRE AND SPRINGS

1994-06-01
HISTORICAL
J157_199406
This SAE Recommended Practice covers the mechanical and chemical requirements of oil-tempered chromium silicon alloy steel wire used for the manufacture of springs requiring resistance to set when used at moderately elevated temperatures. It also covers the processing requirements of springs fabricated from this wire.
Standard

Special Quality High-Tensile, Hard-Drawn Mechanical Spring Wire and Springs

1998-06-01
CURRENT
J271_199806
This SAE Recommended Practice covers the mechanical and chemical requirements of special quality high tensile, hard-drawn carbon-steel spring wire with restricted size tolerances. This material is used where such restricted dimensional requirements are necessary for the manufacture of highly stressed mechanical springs and wire forms. It is generally employed for applications subject to static loads or infrequent stress repetitions. This document also covers the processing requirements of springs and forms fabricated from this wire.
Standard

SPECIAL QUALITY HIGH TENSILE, HARD DRAWN MECHANICAL SPRING WIRE AND SPRINGS

1988-12-01
HISTORICAL
J271_198812
This recommended practice covers the mechanical and chemical requirements of special quality high tensile, hard drawn carbon steel spring wire with restricted size tolerances. This material is used where such restricted dimensional requirements are necessary for the manufacture of highly stressed mechanical springs and wire forms. It is generally employed for applications subject to static loads or infrequent stress repetitions. This recommended practice also covers basic materials and processing requirements of springs and forms fabricated therefrom.
Standard

SPECIAL QUALITY HIGH-TENSILE, HARD-DRAWN MECHANICAL SPRING WIRE AND SPRINGS

1994-06-01
HISTORICAL
J271_199406
This SAE Recommended Practice covers the mechanical and chemical requirements of special quality high-tensile, hard-drawn, carbon-steel spring wire with restricted size tolerances. This material is used where such restricted dimensional requirements are necessary for the manufacture of highly stressed mechanical springs and wire forms. It is generally employed for applications subject to static loads or infrequent stress repetitions. This document also covers the processing requirements for springs and forms fabricated from this wire.
Standard

OIL TEMPERED CARBON STEEL SPRING WIRE AND SPRINGS

1988-12-01
HISTORICAL
J316_198812
This specification covers the mechanical, chemical, and dimensional requirements of oil tempered carbon steel spring wire used in the automotive and related industries. It is especially intended for the manufacture of mechanical springs and wire forms which are not subjected to a large number of high stress cycles. Class I wire is intended for moderate stress and Class II for higher stress level applications. This specification also covers the basic material and heat treat requirements for springs fabricated from this wire.
Standard

Oil-Tempered Carbon-Steel Valve Spring Quality Wire and Springs

1998-06-01
CURRENT
J351_199806
This SAE Recommended Practice covers the physical and chemical requirements of oil- tempered carbon-steel valve spring quality wire used for the manufacture of engine valve springs and other springs requiring high-fatigue properties. This document also covers the processing requirements of springs fabricated from this wire.
Standard

OIL TEMPERED CARBON STEEL VALVE SPRING QUALITY WIRE AND SPRINGS

1988-12-01
HISTORICAL
J351_198812
This specification covers the physical and chemical requirements of oil tempered carbon steel valve spring quality wire used for the manufacture of engine valve springs and other springs requiring high-fatigue properties. This specification also covers the basic material and processing requirements of springs fabricated from this wire.
Standard

OIL-TEMPERED CARBON-STEEL VALVE SPRING QUALITY WIRE AND SPRINGS

1994-06-01
HISTORICAL
J351_199406
This SAE Recommended Practice covers the physical and chemical requirements of oil-tempered carbon-steel valve spring quality wire used for the manufacture of engine valve springs and other springs requiring high-fatigue properties. This document also covers the basic processing requirements of springs fabricated from this wire.
Standard

OIL-TEMPERED CARBON-STEEL SPRING WIRE AND SPRINGS

1994-06-01
HISTORICAL
J316_199406
This SAE Recommended Practice covers the mechanical, chemical, and dimensional requirements of oil-tempered carbon-steel spring wire used in the automotive and related industries. It is especially intended for the manufacture of mechanical springs and wire forms which are not subjected to a large number of high stress cycles. Class I wire is intended for moderate stress and Class II for higher stress level applications. This document also covers the processing requirements for springs fabricated from this wire.
Standard

Oil-Tempered Carbon-Steel Spring Wire and Springs

1998-06-01
CURRENT
J316_199806
This SAE Recommended Practice covers the mechanical, chemical, and dimensional requirements of oil-tempered carbon-steel spring wire used in the automotive and related industries. It is especially intended for the manufacture of mechanical springs and wire forms which are not subjected to a large number of high stress cycles. Class I wire is intended for moderate stress and Class II for higher stress level applications. This document also covers the processing requirements for springs fabricated from this wire.
Standard

MUSIC STEEL SPRING WIRE AND SPRINGS

1994-06-01
HISTORICAL
J178_199406
This SAE Recommended Practice covers a high quality, hard-drawn, steel spring wire, uniform in mechanical properties, intended for the manufacturer of spring and wire forms subjected to high stresses or requiring good fatigue properties. It also covers processing requirements of springs fabricated from this wire.
Standard

MUSIC STEEL SPRING WIRE AND SPRINGS

1988-12-01
HISTORICAL
J178_198812
This SAE Recommended Practice covers a high quality, hard drawn, steel spring wire, uniform in mechanical properties, intended for the manufacturer of spring and wire forms subjected to high stresses or requiring good fatigue properties. It covers basic materials and processing requirements of springs and form fabricated therefrom.
Standard

Music Steel Spring Wire and Springs

1998-06-01
CURRENT
J178_199806
This SAE Recommended Practice covers a high quality, hard-drawn, steel spring wire, uniform in mechanical properties, intended for the manufacturer of spring and wire forms subjected to high stresses or requiring good fatigue properties. It covers processing requirements of springs fabricated from this wire.
Standard

Potential Standard Steels

2023-06-06
CURRENT
J1081_202306
This SAE Information Report provides a uniform means of designating wrought steels during a period of usage prior to the time they meet the requirements for SAE standard steel designation. The numbers consist of the prefix PS1 followed by a sequential number starting with 1. A number once assigned is never assigned to any other composition. A PS number may be obtained for steel composition by submitting a written request to SAE Staff, indicating the chemical composition and other pertinent characteristics of the material. If the request is approved according to established procedures, SAE Staff will assign a PS number to the grade. This number will remain in effect until the grade meets the requirements for an SAE standard steel or the grade is discontinued according to established procedures. Table 1 is a listing of the chemical composition limits of potential standard steels which were considered active on the date of the last survey prior to the date of this report.
X