Refine Your Search

Topic

Author

Search Results

Journal Article

Closed-Loop Combustion Control of a HCCI Engine with Re-Breathing EGR System

2013-10-15
2013-32-9069
This study experimentally investigates the control system and the algorithm after constructing a HCCI combustion control system for the development of a small HCCI engine fuelled with Dimethyl Ether (DME). This system can control four throttles for the mixing ratio of three gases of in-cylinder (stoichiometric pre-mixture, hot EGR gas and cold EGR gas). At first, the combustion behavior for combustion phasing retarded operation with cold and hot EGR was examined. Then, the potential of model-based and feed back control for HCCI combustion with change of the demand of IMEP was investigated. In the end, the limit of combustion-phasing retard for IMEP and PRR was explored. Results shows that to get high IMEP with acceptable PRR and low coefficient of variation of IMEP, crank angle of 50% heat release (CA50) should be controlled at constant phasing in the expansion stroke. CA50 can be controlled by changing the ratio of pre-mixture, hot EGR gas and cold EGR gas with throttles.
Journal Article

A Potentiality of Dedicated EGR in SI Engines Fueled by Natural Gas for Improving Thermal Efficiency and Reducing NOx Emission

2014-11-11
2014-32-0108
Recently, a potentiality of Dedicated EGR (D-EGR) concept SI engine has been studied. This concept engine had four cylinders and operated with exhaust gas supplied from the single cylinder to the intake manifold. Compared with conventional SI engines, it was able to increase thermal efficiency and decrease CO, HC, and NOx emission by the high D-EGR ratio 0.25. In this study, numerical analysis of a SI engine with D-EGR system with various D-EGR ratios was conducted for detailed understanding the potentiality of this concept in terms of thermal efficiency and NOx emission. #1 cylinder of assumed engine was used as D-EGR cylinder that equivalence ratio varied from 0.6 to 3.4. Entire exhaust gas from #1 cylinder was recirculated to the other cylinders. The other cylinders run with this exhaust gas and new premixed air and fuel with various equivalence ratios from 0.6-1.0.
Journal Article

Backward Flow of Hot Burned Gas Surrounding High-Pressure Diesel Spray Flame from Multi-hole Nozzle

2015-09-01
2015-01-1837
The backward flow of the hot burned gas surrounding a diesel flame was found to be one of the factors dominating the set-off length (also called the lift-off length), that is, the distance from a nozzle exit into which a diffusion flame cannot intrude. In the combustion chamber of an actual diesel engine, the entrainment of the surrounding gas into a spray jet from a multi-hole nozzle is restricted by the walls and adjacent spray jets, which induces the backward flow of the surrounding gas. A new momentum theory to calculate the backward flow velocity was established by extending Wakuri's momentum theory. Shadowgraph imaging in an optical engine successfully visualized the backward flow of the hot burned gas.
Journal Article

A New Generation of Optically Accessible Single-Cylinder Engines for High-speed and High-load Combustion Analysis

2011-08-30
2011-01-2050
Over the last few decades, in-cylinder visualization using optically accessible engines has been an important tool in the detailed analysis of the in-cylinder phenomena of internal combustion engines. However, most current optically accessible engines are recognized as being limited in terms of their speed and load, because of the fragility of certain components such as the elongated pistons and transparent windows. To overcome these speed and load limits, we developed a new generation of optically accessible engines which extends the operating range up to speeds of 6000 rpm for the SI engine version, and up to in-cylinder pressures of 20 MPa for the CI engine version. The main reason for the speed limitation is the vibration caused by the inertia force arising from the heavy elongated piston, which increases with the square of the engine speed.
Technical Paper

An Investigation of Combustion Control Using EGR for Small and Light HCCI Engine Fuelled with DME

2007-07-23
2007-01-1876
The HCCI engine could offer low NOx, PM emissions and high efficiency. However the operation region of the HCCI combustion is limited because of the knocking at high load and the misfire at low load. Moreover the HCCI principle lacks direct combustion control and needs a system to control the combustion phasing with high accuracy. Today there exists various ways to control the HCCI combustion, such as Variable Valve Train, Variable Compression Ratio, Inlet Air Heating and Dual Fuels. However such variable mechanisms and Inlet Air Heating tend to be heavy and complex. Dual Fuels method needs two types of fuels and has a challenge in infrastructure. In this study, in order to develop a small and light HCCI engine, a simple HCCI combustion control system is proposed. DME (Di-methyl Ether) is used as the fuel to keep the structure small and light. In this system, the mixing ratio of three gases: stoichiometric pre-mixture, hot EGR gas and cold EGR gas is changed by only throttles.
Technical Paper

An Investigation of the Effect of Thermal Stratification on HCCI Combustion by using Rapid Compression Machine

2007-07-23
2007-01-1870
A significant drawback to HCCI engines is the knocking caused by rapid increases in pressure. Such knocking limits the capacity for high-load operation. To solve this problem, thermal stratification in the combustion chamber has been suggested as possible solution. Thermal stratification has the potential to reduce the maximum value of the rate of pressure increase combustion by affecting the local combustion start time and extending the duration of combustion. The purpose of this study was to experimentally obtain fundamental knowledge about the effect of thermal stratification on the HCCI combustion process. Experiments were conducted in a rapid compression machine (RCM) equipped with a quartz window to provide optical access to the combustion chamber. The machine was fueled with DME, n-Butane, n-Heptane and iso-Octane, all of which are currently being investigated as alternative fuels and have different low temperature characteristics.
Technical Paper

Experimental Study of Transient Gas Jet Impinging on a Wall

1990-02-01
900479
The process of forming mixtures of injected fuels and ambient air has significant effects on the ignition and combustion process in the direct injection engine. In these engines fuel is injected intermittently and fuel jet impinges on a combustion chamber wall. This study deals with a fundamental experiment on the mixing process of the transient gas jet together with the instantaneous concentration measurement and statistical analysis of the transient turbulent mixing process in the jet. Helium or carbon dioxide is injected at constant pressure into quiescent atmosphere through the single shot device. This paper presents a laboratory automation system for measuring the characteristics of transient gas jet and processing the data. A discussion on the process of mixture formation of transient gas jets impinging on a wall is carried out with time- and space- resolved concentration distribution.
Technical Paper

Mechanism of Road Side NOx Pollution Exhausted by On-Road Driving Diesel Vehicle - Comparison between Vehicle Adopted for New Long Term Regulation and Vehicle Adopted for Long Term Regulation Using On-board Measurement System

2010-10-25
2010-01-2277
Nitrogen oxides, collectively called NOx, from diesel vehicles are considered to be accumulated by particular area of roadsides, so-called "Hot-spot," and result in harmful influence to pedestrians and residents by roadsides. Japanese regulations over emissions of diesel vehicles have been tightened year by year and adopting regulations, emissions in mode test on chassis dynamometer or engine dynamometer have reduced. In this research, it was investigated the effect of introduce of transient mode test, Japanese JE05 mode, to NOx emission in real world and to roadside NOx pollution by road test using on-board measurement system. As test vehicles, 2 ton diesel vehicle which is adopted for Long Term Regulation (steady-state mode test, Diesel 31 mode test, 1998) and 3 ton diesel vehicle adopted for New Long Term Regulation (transient mode test, Japanese JE05 mode, 2005) with on-board measurement system was used.
Technical Paper

An Investigation of the Effects of Fuel Inhomogeneity on the Pressure Rise Rate in HCCI engine using Chemiluminescence Imaging

2010-09-28
2010-32-0097
Theoretically, homogeneous charge compression engines (HCCI) are able to grant a high thermal efficiency, as well as a low NOx and particulate emissions. This ability is mainly due to the combustion process, which, contrary to both Diesel and Gasoline engine, is homogeneous in time and space within the combustion chamber. But despite these advantages, the engine operating condition is limited by the narrow boundaries of misfire at low load and knocking at high load. For that matter, one of the numerous ways of overcoming knocking is to deliberately create fuel inhomogeneities within the combustion chamber, since it has proved to lengthen combustion duration and to drastically reduce maximum pressure rise rate (PRR). Nevertheless, though the global effects of fuel inhomogeneities on PRR have been studied, we lack information that explains this phenomenon.
Technical Paper

Ultra-Clean Combustion Technology Combining a Low-Temperature and Premixed Combustion Concept for Meeting Future Emission Standards

2001-03-05
2001-01-0200
Experimental investigations were conducted with a direct-injection diesel engine to improve exhaust emission, especially nitrogen oxide (NOx) and particulate matter (PM), without increasing fuel consumption. As a result of this work, a new combustion concept, called Modulated Kinetics (MK) combustion, has been developed that reduces NOx and smoke simultaneously through low-temperature combustion and premixed combustion, respectively. The characteristics of a new combustion concept were investigated using a single cylinder DI diesel engine and combustion photographs. The low compression ratio, EGR cooling and high injection pressure was applied with a multi-cylinder test engine to accomplish premixed combustion at high load region. Combustion chamber specifications have been optimized to avoid the increase of cold-start HC emissions due to a low compression ratio.
Technical Paper

The Effect of Fuel Composition and Additive Content on Injector Deposits and Performance of an Air-Assisted Direct Injection Spark Ignition (DISI) Research Engine

2001-05-07
2001-01-2030
This paper presents the findings of some fundamental characterisation of the deposits that form on the injectors of an air-assisted DISI automotive engine, including the effect of these deposits on engine performance when operated in different combustion modes, with varying fuel composition and additive content. A root cause analysis was undertaken, including an assessment of injector temperature and deposit chemistry. Fuels from a matrix designed around the European year 2000 gasoline specifications for T90, olefin and aromatic levels were used to study the effect of fuel composition on deposit formation. Two commercial gasoline detergent additives, of different chemistries, were used to investigate the impact on deposit formation. The results of the fuels study and deposit analysis are consistent with published theories concerning fuel composition impact on combustion chamber deposit (CCD).
Technical Paper

Effects of Aromatics Content and 90% Distillation Temperature of Diesel Fuels on Flame Temperature and Soot Formation

2001-05-07
2001-01-1940
In this study, the effects of fuel properties, aromatics content and 90% distillation temperature T90, on flame temperature and soot formation were studied using a rapid compression machine (RCM). Aromatics content and T90 distillation temperature were parameters isolated from influence of each other, and from cetane number. A fuel spray was injected in the RCM combustion chamber by a single nozzle hole. The ignition and combustion processes of diesel spray were observed by a high-speed direct photography. Flame temperature and KL factor (which indicates the soot concentration), were analyzed by the two-color method. The rate of heat release was analyzed from indicated diagrams. The fuels with aromatics content showed higher flame temperature. The fuel with highest T90 distillation temperature showed highest flame temperature.
Technical Paper

Effect of Nozzle Diameter and EGR Ratio on the Flame Temperature and Soot Formation for Various Fuels

2001-05-07
2001-01-1939
In this study, effects of nozzle hole diameter and EGR ratio on flame temperature (indication of NO formation) and KL value (indication of soot formation) were investigated. Combustion of a single diesel fuel spray in the cylinder of a rapid compression machine (RCM) was analyzed. Three nozzles with different hole diameter were used corresponding to present, near term and long term heavy duty diesel engine specifications. EGR was simulated through 2%vol. CO2 addition to the inlet air and by increase of in-cylinder surrounding gas temperature. Various types of fuels were used in this. The ignition and combustion processes of diesel fuel spray were observed by a high-speed direct photography and by indicated pressure diagrams. Flame temperature and KL factor were analyzed by a two-color method. With larger nozzle hole diameters there are larger high temperature areas. With smaller nozzle hole diameters there is more soot formed. Introduction of 2% vol.
Technical Paper

Analysis of the Effect of Charge Inhomogeneity on HCCI Combustion by Chemiluminescence Measurement

2004-06-08
2004-01-1902
In the HCCI Engine, inhomogeneity in fuel distribution and temperature in the pre-mixture exists microscopically, and has the possibility of affecting the ignition and combustion process. In this study, the effect of charge inhomogeneity in fuel distribution on the HCCI combustion process was investigated. Two-dimensional images of the chemiluminescence were captured by using a framing camera with an optically accessible engine in order to understand the spatial distribution of the combustion. DME was used as a test fuel. By changing a device for mixing air and fuel in the intake manifold, inhomogeneity in fuel distribution in the pre-mixture was varied. The result shows that luminescence is observed in a very short time in a large part of the combustion chamber under the homogeneous condition, while luminescence appears locally with considerable time differences under the inhomogeneous condition.
Technical Paper

Cause of Exhaust Smoke and Its Reduction Methods in an HSDI Diesel Engine Under High-Speed and High-Load Conditions

2002-03-04
2002-01-1160
The cause of the exhaust smoke and its reduction methods in a small DI Diesel engine with a small-orifice-diameter nozzle and common rail F.I.E. were investigated under high-speed and high-load condition, using both in-cylinder observations and Three-dimensional numerical analyses. The following points were clarified during this study. At these conditions, fuel sprays are easily pushed away by a strong swirl, and immediately flow out to the squish area by a strong reverse squish. Therefore, the air in the cavity is not effectively used. Suppressing the airflow in a piston cavity, using such ideas as enlarging the piston cavity diameter or reducing the port swirl ratio, decreases the excessive outflow of the fuel-air mixture into the squish area, and allows the full use of air in the whole cavity. Hence, exhaust smoke is reduced.
Technical Paper

Combustion Analysis of Natural Gas in a Four Stroke HCCI Engine Using Experiment and Elementary Reactions Calculation

2003-03-03
2003-01-1089
Homogeneous charge compression ignition (HCCI) is regarded as the next generation combustion regime in terms of high thermal efficiency and low emissions. It is difficult to control autoignition and combustion because they are controlled primarily by the chemical kinetics of air/fuel mixture. In this study, it was investigated the characteristics of autoignition and combustion of natural gas in a four-stroke HCCI engine using experiment and elementary reactions calculation. The influence of equivalence ratio, intake temperature, intake pressure and engine speed on autoignition timing, autoignition temperature, combustion duration and the emissions of THC, CO, CO2 were investigated. And also, to clarify the influence of n-butane on autoignition and combustion of natural gas, it was changed the blend ratio of n-butane from 0 mol% to 10 mol% in methane / n-butane / air mixtures.
Technical Paper

Effects of Combustion Chamber Insulation on the Heat Rejection and Thermal Efficiency of Diesel Engines

1992-02-01
920543
Experiments were conducted with 4-cylinder and single-cylinder direct injection diesel engines to examine the effects of combustion chamber insulation on heat rejection and thermal efficiency. The combustion chamber was insulated by using a silicon nitride piston cavity that was shrink-fitted into a titanium alloy crown. The effect of insulation on heat rejection was examined on the basis of heat release calculations made from cylinder pressure time histories. High-speed photography was used to investigate combustion phenomena. The results showed that heat rejection was influenced by the combustion chamber geometry and swirl ratio and that it was reduced by insulating the combustion chamber. However, because combustion deteriorated, it was not possible to obtain an improvement in thermal efficiency equivalent to the reduction in heat rejection.
Technical Paper

Investigation of Cycle-to-Cycle Variation of Turbulent Flow in a High-Tumble SI Engine

2017-10-08
2017-01-2210
The thermal efficiency of a spark-ignition (SI) engine must be improved to reduce both environmental load and fuel consumption. Although lean SI engine operation can strongly improve thermal efficiency relative to that of stoichiometric SI operation, the cycle-to-cycle variation (CCV) of combustion increases with the air dilution level. Combustion CCV is caused by CCVs of many factors, such as EGR, spark energy, air-fuel ratio, and in-cylinder flow structure related to engine speed. This study focuses on flow structures, especially the influence of a tumble structure on flow fluctuation intensity near ignition timing. We measured the flow field at the vertical center cross section of an optically accessible high-tumble flow engine using time-resolved particle image velocimetry. There are many factors considered to be sources of CCV, we analyzed three factors: the intake jet distribution, distribution of vortex core position and trajectory of the fluid particle near the spark plug.
Technical Paper

An Investigation of the Potential of EGR stratification for Reducing Pressure Rise Rate in HCCI Combustion by using Rapid Compression Machine

2011-08-30
2011-01-1762
HCCI (Homogeneous Charge Compression Ignition) engine is able to achieve low NOx and particulate emissions as well as high efficiency. However, its operation range is limited by the knocking at high load, which is the consequence of excessively rapid pressure rises. It has been suggested that making thermal or fuel inhomogeneities can be used to solve this problem, since these inhomogeneities have proved to create different auto-ignition timing zones. It has also been suggested that EGR (Exhaust Gas Recirculation) has a potential to reduce pressure rise rate. But according to a past report, it was concluded that under the same fueling ratio and CA50 with different initial temperature and EGR ratio, the maximum PRR is almost constant. The purpose of this study is to investigate the fundamental effects of EGR. First, I considered EGR homogeneous charge case. In this case, the effects of EGR and its components like CO₂, H₂O or N₂ on HCCI combustion process is argued.
Technical Paper

Dual-Fuel PCI Combustion Controlled by In-Cylinder Stratification of Ignitability

2006-04-03
2006-01-0028
A concept of dual-fuel, Premixed Compression Ignition (PCI) combustion controlled by two fuels with different ignitability has been developed to achieve drastically low NOx and smoke emissions. In this system, isooctane, which was used to represent high-octane gasoline, was supplied from an intake port and diesel fuel was injected directly into an engine cylinder at early timing as ignition trigger. It was found that the ignition timing of this PCI combustion can be controlled by changing the ratio of amounts of injected two fuels and combustion proceeds very mildly by making spatial stratifications of ignitability in the cylinder even without EGR, as preventing the whole mixture from igniting simultaneously. The operable range of load, where NOx and smoke were less than 10ppm and 0.1 FSN, respectively, was extended up to 1.2MPa of IMEP using an intake air boosting system together with dual fueling.
X