Refine Your Search

Topic

Search Results

Journal Article

Influence of Injection Timing and Piston Bowl Geometry on PCCI Combustion and Emissions

2009-04-20
2009-01-1102
Premixed Charge Compression Ignition (PCCI), a Low Temperature Combustion (LTC) strategy for diesel engines is of increasing interest due to its potential to simultaneously reduce soot and NOx emissions. However, the influence of mixture preparation on combustion phasing and heat release rate in LTC is not fully understood. In the present study, the influence of injection timing on mixture preparation, combustion and emissions in PCCI mode is investigated by experimental and computational methods. A sequential coupling approach of 3D CFD with a Stochastic Reactor Model (SRM) is used to simulate the PCCI engine. The SRM accounts for detailed chemical kinetics, convective heat transfer and turbulent micro-mixing. In this integrated approach, the temperature-equivalence ratio statistics obtained using KIVA 3V are mapped onto the stochastic particle ensemble used in the SRM.
Journal Article

A Detailed Chemistry Simulation of the SI-HCCI Transition

2010-04-12
2010-01-0574
A Stochastic Reactor Model (SRM) has been used to simulate the transition from Spark Ignition (SI) mode to Homogeneous Charge Compression Ignition (HCCI) mode in a four cylinder in-line four-stroke naturally aspirated direct injection SI engine with cam profile switching. The SRM is coupled with GT-Power, a one-dimensional engine simulation tool used for modelling engine breathing during the open valve portion of the engine cycle, enabling multi-cycle simulations. The model is initially calibrated in both modes using steady state data from SI and HCCI operation. The mode change is achieved by switching the cam profiles and phasing, resulting in a Negative Valve Overlap (NVO), opening the throttle, advancing the spark timing and reducing the fuel mass as well as utilising a pilot injection. Experimental data is presented along with the simulation results.
Technical Paper

Performance Improvement of an Asymmetric Twin Scroll Turbocharger Turbine through Secondary Flow Injection

2020-04-14
2020-01-1011
A powerful and efficient turbocharger turbine benefits the engine in many aspects, such as better transient response, lower NOx emissions and better fuel economy. The turbine performance can be further improved by employing secondary flow injection through an injector over the shroud section. A secondary flow injection system can be integrated with a conventional turbine without affecting its original design parameters, including the rotor, volute, and back disk. In this study, a secondary flow injection system has been developed to fit for an asymmetric twin-scroll turbocharger turbine, which was designed for a 6-cylinder heavy-duty diesel engine, aiming at improving the vehicle’s performance at 1100 rpm under full-loading conditions. The shape of the flow injector is similar to a single-entry volute but can produce the flow angle in both circumferential and meridional directions when the flow leaves the injector and enters the shroud cavity.
Journal Article

A Detailed Chemistry Multi-cycle Simulation of a Gasoline Fueled HCCI Engine Operated with NVO

2009-04-20
2009-01-0130
A previously developed Stochastic Reactor Model (SRM) is used to simulate combustion in a four cylinder in-line four-stroke naturally aspirated direct injection Spark Ignition (SI) engine modified to run in Homogeneous Charge Compression Ignition (HCCI) mode with a Negative Valve Overlap (NVO). A portion of the fuel is injected during NVO to increase the cylinder temperature and enable HCCI combustion at a compression ratio of 12:1. The model is coupled with GT-Power, a one-dimensional engine simulation tool used for the open valve portion of the engine cycle. The SRM is used to model in-cylinder mixing, heat transfer and chemistry during the NVO and main combustion. Direct injection is simulated during NVO in order to predict heat release and internal Exhaust Gas Recycle (EGR) composition and mass. The NOx emissions and simulated pressure profiles match experimental data well, including the cyclic fluctuations.
Journal Article

Improvement of DME HCCI Engine Performance by Fuel Injection Strategies and EGR

2008-06-23
2008-01-1659
The combustion and exhaust emission characteristics of a DME fueled HCCI engine were investigated. Different fuel injection strategies were tested under various injection quantities and timings with exhaust gas recirculation (EGR). The combustion phase in HCCI was changed by an in-cylinder direct injection and EGR, due to changes in the in-cylinder temperature and mixture homogeneity. The gross indicated mean effective pressure (IMEPgross) increased and the hydrocarbon (HC) and carbon monoxide (CO) emissions decreased as the equivalence ratio was augmented. The IMEPgross with direct injection was greater than with the port injection due to retarded ignition timing resulting from latent heat of direct injected DME fuel. It was because that most of burn duration was completed before top dead center owing to higher ignitability for DME with high cetane number. However, HC and CO emissions were similar for both injection locations.
Technical Paper

Studying the Influence of Direct Injection on PCCI Combustion and Emissions at Engine Idle Condition Using Two Dimensional CFD and Stochastic Reactor Model

2008-04-14
2008-01-0021
A detailed chemical model was implemented in the KIVA-3V two dimensional CFD code to investigate the effects of the spray cone angle and injection timing on the PCCI combustion process and emissions in an optical research diesel engine. A detailed chemical model for Primary Reference Fuel (PRF) consisting of 157 species and 1552 reactions was used to simulate diesel fuel chemistry. The model validation shows good agreement between the predicted and measured pressure and emissions data in the selected cases with various spray angles and injection timings. If the injection is retarded to -50° ATDC, the spray impingement at the edge of the piston corner with 100° injection angle was shown to enhance the mixing of air and fuel. The minimum fuel loss and more widely distributed fuel vapor contribute to improving combustion efficiency and lowering uHC and CO emissions in the engine idle condition.
Technical Paper

Effect of Multiple Injection Strategies on Emission and Combustion Characteristics in a Single Cylinder Direct-Injection Optical Engine

2009-04-20
2009-01-1354
The effect of multiple injections in a heavy-duty diesel engine was investigated by focusing on single-pilot injection and double-pilot injection strategies with a wide injection timing range, various injection quantity ratios, and various dwell times. Combustion characteristics were studied through flame visualization and heat release analyses as well as emissions tests. Single-pilot injection resulted in a dramatic reduction in nitrogen oxide and smoke emissions when the injection timing was advanced over 40° CA before the start of injection (BSOI) due to combustion with partially premixed charge compression ignition. A brown-colored flame area, which indicates a very fuel-rich mixture region, was rarely detected when more fuel was injected during single-pilot injection. However, hydrocarbon emission increased up to intolerable levels because fuel wetting on the cylinder wall increased.
Technical Paper

A Fast Detailed-Chemistry Modelling Approach for Simulating the SI-HCCI Transition

2010-04-12
2010-01-1241
An established Stochastic Reactor Model (SRM) is used to simulate the transition from Spark Ignition (SI) to Homogeneous Charge Compression Ignition (HCCI) combustion mode in a four-cylinder in-line four-stroke naturally aspirated direct injection SI engine with cam profile switching. The SRM is coupled with GT-Power, a one-dimensional engine simulation tool used for modeling engine breathing during the open valve portion of the engine cycle, enabling multi-cycle simulations. The mode change is achieved by switching the cam profiles and phasing, resulting in a Negative Valve Overlap (NVO), opening the throttle, advancing the spark timing and reducing the fuel mass as well as using a pilot injection. A proven technique for tabulating the model is used to create look-up tables in both SI and HCCI modes. In HCCI mode several tables are required, including tables for the first NVO, transient valve timing NVO, transient valve timing HCCI and steady valve timing HCCI and NVO.
Technical Paper

Effects of Multiple Injections in a HSDI Diesel Engine Equipped with Common Rail Injection System

2004-03-08
2004-01-0127
Diesel fuel injection system is the most important part of the direct-injection diesel engine and, in recent years, it has become one of the critical technologies for emission control with the help of electronically controlled fuel injection. Common rail injection system has great flexibility in injection timing, pressure and multi-injections. Many studies and applications have reported the advantages of using common rail system to meet the strict emission regulation and to improve engine performance for diesel engines. The main objective of this study is to investigate the effect of pilot-, post- and multiple-fuel injection strategies on engine performance and emissions. The study was carried out on a single cylinder optical direct injection diesel engine equipped with a high pressure common rail fuel injection system. Spray and combustion evolutions were visualized through a high speed charge-coupled device (CCD) camera.
Technical Paper

Modelling a Dual-Fuelled Multi-Cylinder HCCI Engine Using a PDF Based Engine Cycle Simulator

2004-03-08
2004-01-0561
Operating the HCCI engine with dual fuels with a large difference in auto-ignition characteristics (octane number) is one way to control the HCCI operation. The effect of octane number on combustion, emissions and engine performance in a 6 cylinder SCANIA truck engine, fuelled with n-heptane and isooctane, and running in HCCI mode, are investigated numerically and compared with measurements taken from Olsson et al. [SAE 2000-01-2867]. To correctly simulate the HCCI engine operation, we implement a probability density function (PDF) based stochastic reactor model (including detailed chemical kinetics and accounting for inhomogeneities in composition and temperature) coupled with GT-POWER, a 1-D fluid dynamics based engine cycle simulator. Such a coupling proves to be ideal for the understanding of the combustion phenomenon as well as the gas dynamics processes intrinsic to the engine cycle.
Technical Paper

Effect of Design Parameters on the Performance of Finned Exhaust Heat Exchanger

2003-10-27
2003-01-3076
This paper describes the results of a DOE (design of experiment) applied to an exhaust heat exchanger to lower the exhaust gas temperature mainly under high load conditions. The heat exchanger was installed between the exhaust manifold and the inlet of the close-coupled catalytic converter (CCC) to avoid thermal aging. The DOE evaluates the influence of the selected eight design parameters of the heat exchanger geometry on the performance of the exhaust gas cooling system, and the interaction between these parameters. To maximize the heat transfer between exhaust gas and coolant, fins were implemented at the inner surface of the heat exchanger. The design parameters consist of the fin geometry (length, thickness, arrangement, number of fin), coolant direction, exchanger wall thickness, and the length of the heat exchanger. The acceptable range of each design parameter is discussed by analyzing the DOE results.
Technical Paper

Combustion Control Using Two-Stage Diesel Fuel Injection in a Single-Cylinder PCCI Engine

2004-03-08
2004-01-0938
A diesel-fueled premixed charged compression ignition (PCCI) combustion technique using a two-stage injection strategy has been investigated in a single cylinder optical engine equipped with a common-rail fuel system. Although PCCI combustion has the advantages of reducing NOx and PM emissions, difficulties in vaporization of a diesel fuel and control of the combustion phase hinder the development of the PCCI engine. A two-stage injection strategy was applied to relieve these problems. The first injection, named as main injection, was an early direct injection of diesel fuel into the cylinder to achieve premixing with air. The second injection was a diesel injection of a small quantity (1.5 mm3) as an ignition promoter and combustion phase controller near TDC. Effects of injection pressure, injected fuel quantity and compression ratio were studied with variation of an intake air temperature.
Technical Paper

Effects of Stratified EGR on the Performance of a Liquid Phase LPG Injection Engine

2004-03-08
2004-01-0982
Exhaust gas recirculation (EGR) and lean burn utilize the diluents into the engine cylinder to control combustion leading to enhanced fuel economy and reduced emissions. However, the occurrence of excessive cyclic variation with high diluent rates, brings about an undesirable combustion instability within the engine cylinder resulting in the deterioration of both engine performance and emissions. Proper stratification of mixture and diluents could improve the combustion stability under high diluent environment. EGR stratification within the cylinder was made by adopting a fast-response solenoid valve in the midst of EGR line and controlling its timing and duty. With EGR in both homogeneous mode and stratified mode, in-cylinder pressure and emissions were measured. The thermodynamic heat release analysis showed that the burning duration was decreased in case of stratified EGR. It was found that the stratification of EGR hardly affected the emissions.
Technical Paper

Engine Controller for the Hydrocarbon Reduction During Cold Start in SI Engine

2002-05-06
2002-01-1666
In order to reduce hydrocarbon emission in gasoline engine, especially during warming-up period, it is necessary to estimate the fuel and fuel product flow rate in the emission gas. The intake airflow rate should also be estimated. A strategy was proposed to estimate air fuel ratio in a spark ignition engine. The mass of air in the cylinder was determined by filling-emptying method, and the fuel in the intake manifold and cylinder was estimated by the “wall-wetting” effect calculation. The use of graphical dynamic system control software is becoming more popular as automotive engineers strive to reduce the time to develop new control systems. The rapid prototype engine controller has been developed by using MATLAB, SIMULINK, REAL TIME WORKSHOP, xPC Target, and WATCOM C++. The sensor data from the engine will be transferred to computer, and the fuel delivery will be calculated.
Technical Paper

Effects of Engine Operating Conditions on Catalytic Converter Temperature in an SI Engine

2002-05-06
2002-01-1677
To meet stringent emission standards, a considerable amount of development work is necessary to ensure suitable efficiency and durability of catalyst systems. The main challenge is to reduce the engine cold-start emissions. Close-coupled catalyst (CCC) provides fast light-off time by utilizing the energy in the exhaust gas. However, if some malfunction occurred during engine operation and the catalyst temperature exceeds 1050°C, the catalytic converter becomes deactivated and shows poor conversion efficiency. Close-coupled catalyst temperature was investigated under various engine operating conditions. All of the experiments were conducted with a 1.0L SI engine at 1500-4000 rpm. The engine was operated at no load to full load conditions. Exhaust gas temperature and catalyst temperature were measured as a function of lambda value (0.8-1.2), ignition timing (BTDC 30°-ATDC 30°) and misfire rates (0-28%).
Technical Paper

Flame Propagation Characteristics in a Heavy Duty LPG Engine with Liquid Phase Port Injection

2002-05-06
2002-01-1736
Combustion and flame propagation characteristics of the liquid phase LPG injection (LPLI) engine were investigated in a single cylinder optical engine. Lean burn operation is needed to reduce thermal stress of exhaust manifold and engine knock in a heavy duty LPG engine. An LPLI system has advantages on lean operation. Optimized engine design parameters such as swirl, injection timing and piston geometry can improve lean burn performance with LPLI system. In this study, the effects of piston geometry along with injection timing and swirl ratio on flame propagation characteristics were investigated. A series of bottom-view flame images were taken from direct visualization using a UV intensified high-speed CCD camera. Concepts of flame area speed, in addition to flame propagation patterns and thermodynamic heat release analysis, was introduced to analyze the flame propagation characteristics.
Technical Paper

Simulation of Fuel/Air Mixture Formation for Heavy Duty Liquid Phase LPG Injection (LPLI) Engines

2003-03-03
2003-01-0636
Submodels are developed for injection, evaporation and wall impingement of a liquid LPG spray. The injection model determines the quality of fuel as two-phase choke flow at the nozzle exit. Wind tunnel experiments show the spray penetration more sensitive to ambient flow velocity than to injection pressure. Most evaporation occurs during choking, while heat transfer from surrounding air has a negligible effect on downstream droplet sizes. Three dimensional simulation shows that the bathtub cavity is better than the dog-dish cavity for stable flame propagation in lean-burn conditions. The injection timing during the IVC period has a negligible effect, while injection during an intake stroke enhances fuel/air mixing to result in more homogeneous cylinder charge.
Technical Paper

Spray and Combustion of Diesel Fuel under Simulated Cold-Start Conditions at Various Ambient Temperatures

2017-09-04
2017-24-0069
The spray and combustion of diesel fuel were investigated to provide a better understanding of the evaporation and combustion process under the simulated cold-start condition of a diesel engine. The experiment was conducted in a constant volume combustion chamber and the engine cranking period was selected as the target ambient condition. Mie scattering and shadowgraph techniques were used to visualize the liquid- and vapor-phase of the fuel under evaporating non-combustion conditions (oxygen concentration=0%). In-chamber pressure and direct flame visualization were acquired for spray combustion conditions (oxygen concentration=21%). The fuel was injected at an injection pressure of 30 MPa, which is the typical pressure during the cranking period.
Technical Paper

HCCI Combustion Control Using Dual-Fuel Approach: Experimental and Modeling Investigations

2012-04-16
2012-01-1117
A dual-fuel approach to control combustion in HCCI engine is investigated in this work. This approach involves controlling the combustion heat release rate by adjusting fuel reactivity according to the conditions inside the cylinder. Experiments were performed on a single-cylinder research engine fueled with different ratios of primary reference fuels and operated at different speed and load conditions, and results from these experiments showed a clear potential for the approach to expand the HCCI engine operation window. Such potential is further demonstrated dynamically using an optimized stochastic reactor model integrated within a MATLAB code that simulates HCCI multi-cycle operation and closed-loop control of fuel ratio. The model, which utilizes a reduced PRF mechanism, was optimized using a multi-objective genetic algorithm and then compared to a wide range of engine data.
Technical Paper

Multi-Objective Optimization of a Kinetics-Based HCCI Model Using Engine Data

2011-08-30
2011-01-1783
A multi-objective optimization scheme based on stochastic global search is developed and used to examine the performance of an HCCI model containing a reduced chemical kinetic mechanism, and to study interrelations among different model responses. A stochastic reactor model of an HCCI engine is used in this study, and dedicated HCCI engine experiments are performed to provide reference for the optimization. The results revealed conflicting trends among objectives normally used in mechanism optimization, such as ignition delay and engine cylinder pressure history, indicating that a single best combination of optimization variables for these objectives did not exist. This implies that optimizing chemical mechanisms to maintain universal predictivity across such conflicting responses will only yield a predictivity tradeoff. It also implies that careful selection of optimization objectives increases the likelihood of better predictivity for these objectives.
X