Refine Your Search

Topic

Search Results

Standard

Oil Systems for Helicopter Powerplants

1998-11-01
CURRENT
AIR4281
Turbine engines installed in helicopters require a highly sophisticated oil system to fulfill two tasks: a Cooling/oil supply b Lubrication While lubrication is an engine internal procedure, cooling and oil supply require more or less design activity on the aircraft side of the engine/airframe interface for proper engine function, depending on the engine type. The necessity for engine cooling and oil supply provisions on the airframe can lead to interface problems because the helicopter manufacturer can influence engine related functions due to the design of corresponding oil system components. This SAE Aerospace Information Report (AIR) deals with integration of engine oil systems with the airframe and gives information for both helicopter and engine manufacturers for a better understanding of interface requirements.
Standard

Oil Systems for Helicopter Powerplants

2022-01-13
WIP
AIR4281A
Turbine engines installed in helicopters require a highly sophisticated oil system to fulfill two tasks: a. Cooling/oil supply b. Lubrication. While lubrication is an engine internal procedure, cooling and oil supply require more or less design activity on the aircraft side of the engine/airframe interface for proper engine function, depending on the engine type. The necessity for engine cooling and oil supply provisions on the airframe can lead to interface problems because the helicopter manufacturer can influence engine related functions due to the design of corresponding oil system components. This SAE Aerospace Information Report (AIR) deals with integration of engine oil systems with the airframe and gives information for both helicopter and engine manufacturers for a better understanding of interface requirements.
Standard

EVALUATION OF HELICOPTER TURBINE ENGINE LINEAR VIBRATION ENVIRONMENT

2021-03-11
CURRENT
AIR1289A
This SAE Aerospace Information Report (AIR) outlines a recommended procedure for evaluation of the vibration environment to which the gas turbine engine powerplant is subjected in the helicopter installation. This analysis of engine vibration is normally demonstrated on a one-time basis upon initial certification, or after a major modification, of an engine/helicopter configuration. This AIR deals with linear vibration as measured on the basic case structure of the engine and not, for example, torsional vibration in drive shafting or vibration of a component within the engine such as a compressor or turbine airfoil. In summary, this AIR discusses the engine manufacturer’s "Installation Test Code" aspects of engine vibration and proposes an appropriate measurement method.
Standard

COOLING OF TURBINE ENGINES IN HELICOPTERS

1967-08-31
HISTORICAL
ARP996
A tested method of data presentation and use is described herein. The method shown is a useful guide, to be used with care and to be improved with use.
Standard

Turbine Drive Shaft Connection

2023-01-20
CURRENT
ARP721
This ARP applies to turbine engines that are to be used in helicopters. It provides the engine designer guide lines in achieving a satisfactory turbine engine drive shaft connection.
Standard

Air Bleed Objective for Helicopter Turbine Engines

1997-05-01
HISTORICAL
AIR984C
This SAE Aerospace Information Report (AIR) defines the helicopter bleed air requirements which may be obtained through compressor extraction and is intended as a guide to engine designers.
Standard

HELICOPTER ENGINE FOREIGN OBJECT DAMAGE

1989-11-30
HISTORICAL
AIR4096
The purpose of this SAE Aerospace Information Report is to disseminate qualitative information regarding foreign object damage (FOD) to gas turbine engines used to power helicopters and to discuss methods of preventing FOD. Although turbine-powered, fixed-wing aircraft are also subject to FOD, the unique ability of the helicopter to hover above, takeoff from, and land on unprepared areas creates a special need for a separate treatment of this subject as applied to rotary-winged aircraft.
Standard

Defining and Measuring Factors Affecting Helicopter Turbine Engine Power Available

1998-09-01
HISTORICAL
ARP1702A
This SAE Aerospace Recommended Practice (ARP) identifies and defines a method of measuring those factors affecting installed power available for helicopter power plants. These factors are installation losses, accessory power extraction, and operation effects. Accurate determination of these factors is vital in the calculation of helicopter performance as described in the flight manual. It is intended that the methods herein prescribe and define each factor as well as an approach to measuring said factor. Only standard installations of turboshaft engines in helicopters are considered. Special arrangements leading to high installation losses, such as the fitting of an infrared suppressor may require individual techniques for the determination and definition of engine installation losses.
Standard

Defining and Measuring Factors Affecting Helicopter Turbine Engine Power Available

2021-10-01
CURRENT
ARP1702B
This SAE Aerospace Recommended Practice (ARP) identifies and defines a method of measuring those factors affecting installed power available for helicopter powerplants. These factors are installation losses, accessory power extraction, and operational effects. Accurate determination of these factors is vital in the calculation of helicopter performance as described in the RFM. It is intended that the methods presented herein prescribe and define each factor as well as an approach to measuring said factor. Only basic installations of turboshaft engines in helicopters are considered. Although the methods described may apply in principle to other configurations that lead to more complex installation losses, such as an inlet particle separator, inlet barrier filter (with or without a bypass system), or infrared suppressor, specialized or individual techniques may be required in these cases for the determination and definition of engine installation losses.
Standard

Helicopter Engine/Airframe Interface Document and Checklist

1997-06-01
HISTORICAL
ARP1507A
This SAE Aerospace Recommended Practice (ARP) provides a guide for the preparation of a Helicopter Engine/Airframe Interface Document and Checklist. This document and checklist is intended to provide complete relevant information on the characteristics, performance, and engine interfaces. Of most importance is the identification of the data and the location of data to assure that the engine manufacturer and the airframe manufacturer supply information that can be easily located by either manufacturer.
X