Refine Your Search

Topic

Search Results

Standard

High Temperature Materials for Exhaust Manifolds

1999-08-01
HISTORICAL
J2515_199908
A subcommittee within SAE ISTC Division 35 has written this report to provide automotive engineers and designers a basic understanding of the design considerations and high temperature material availability for exhaust manifold use. It is hoped that it will constitute a concise reference of the important characteristics of selected cast and wrought ferrous materials available for this application, as well as methods employed for manufacturing. The different types of manifolds used in current engine designs are discussed, along with their range of applicability. Finally, a general description of mechanical, chemical, and thermophysical properties of commonly-used alloys is provided, along with discussions on the importance of such properties.
Standard

Sintered Tool Materials

2017-12-20
CURRENT
J1072_201712
This SAE Recommended Practice covers the identification and classification of ceramic, sintered carbide, and other cermet tool products. Its purpose is to provide a standard method for designating the characteristics and properties of sintered tool materials.
Standard

SINTERED TOOL MATERIALS

1977-02-01
HISTORICAL
J1072_197702
This SAE Recommended Practice covers the identification and classification of ceramic, sintered carbide, and other cermet tool products. Its purpose is to provide a standard method for designating the characteristics and properties of sintered tool materials.
Standard

Cleanliness Rating of Steels by the Magnetic Particle Method

2018-01-09
CURRENT
J421_201801
This SAE Recommended Practice provides a rating procedure for the cleanliness rating of steels by the magnetic particle method. The procedure is based on counting the number of indications (frequency) and employs a weighted value to obtain a severity factor. The method outlined is similar to that described in SAE Aerospace Material Specification AMS 2301.
Standard

CLEANLINESS RATING OF STEELS BY THE MAGNETIC PARTICLE METHOD

1977-11-01
HISTORICAL
J421B_197711
This SAE Recommended Practice provides a rating procedure for the cleanliness rating of steels by the magnetic particle method. The procedure is based on counting the number of indications (frequency) and employs a weighted value to obtain a severity factor. The method outlined is similar to that described in SAE Aerospace Material Specification AMS 2301.
Standard

CLEANLINESS RATING OF STEELS BY THE MAGNETIC PARTICLE METHOD

1993-05-01
HISTORICAL
J421_199305
This SAE Recommended Practice provides a rating procedure for the cleanliness rating of steels by the magnetic particle method. The procedure is based on counting the number of indications (frequency) and employs a weighted value to obtain a severity factor. The method outlined is similar to that described in SAE Aerospace Material Specification AMS 2301.
Standard

MAGNETIC PARTICLE INSPECTION

1991-03-01
HISTORICAL
J420_199103
The scope of this SAE Information Report is to provide general information relative to the nature and use of magnetic particles for nondestructive testing. The document is not intended to provide detailed technical information, but will serve as an introduction to the theory and capabilities of magnetic particle testing, and as a guide to more extensive references.
Standard

Magnetic Particle Inspection

2018-01-10
CURRENT
J420_201801
The scope of this SAE Information Report is to provide general information relative to the nature and use of magnetic particles for nondestructive testing. The document is not intended to provide detailed technical information, but will serve as an introduction to the theory and capabilities of magnetic particle testing, and as a guide to more extensive references.
Standard

Magnesium Alloys

2017-12-20
CURRENT
J464_201712
This report on magnesium alloys covers those alloys which have been more commonly used in the United States for automotive, aircraft, and missile applications. Basic information on nomenclature and temper designation is given. Design data and many characteristics covered by a purchase specification are not included.
Standard

MAGNESIUM ALLOYS

1989-01-01
HISTORICAL
J464_198901
This report on magnesium alloys covers those alloys which have been more commonly used in the United States for automotive, aircraft, and missile applications. Basic information on nomenclature and temper designation is given. Design data and many characteristics covered by a purchase specification are not included.
Standard

ZINC ALLOY INGOT AND DIE CASTING COMPOSITIONS

1988-12-01
HISTORICAL
J468_198812
SIMILAR SPECIFICATIONS—UNS Z33521, former SAE 903, ingot is similar to ASTM B 240-79, Alloy AG40A; and UNS Z33520, former SAE 903, die casting is similar to ASTM B 86-76, Alloy AG40A. UNS Z35530, former SAE 925, ingot is similar to ASTM B 240-79, Alloy AC41A; and UNS Z35531, former SAE 925, die casting is similar to ASTM B 86-82a, Alloy AC41A.
Standard

ALLOY AND TEMPER DESIGNATION SYSTEMS FOR ALUMINUM

1973-09-01
HISTORICAL
J993B_197309
This standard provides systems for designating wrought aluminum and wrought aluminum alloys, aluminum and aluminum alloys in the form of castings and foundry ingot, and the tempers in which aluminum and aluminum alloy wrought products and aluminum alloy castings are produced.
Standard

Alloy and Temper Designation Systems for Aluminum

2018-01-09
CURRENT
J993_201801
This standard provides systems for designating wrought aluminum and wrought aluminum alloys, aluminum and aluminum alloys in the form of castings and foundry ingot, and the tempers in which aluminum and aluminum alloy wrought products and aluminum alloy castings are produced.
Standard

ALLOY AND TEMPER DESIGNATION SYSTEMS FOR ALUMINUM

1989-01-01
HISTORICAL
J993_198901
This standard provides systems for designating wrought aluminum and wrought aluminum alloys, aluminum and aluminum alloys in the form of castings and foundry ingot, and the tempers in which aluminum and aluminum alloy wrought products and aluminum alloy castings are produced.
X