Refine Your Search

Topic

Author

Affiliation

Search Results

Journal Article

Simulation-based Assessment of Various Dual-Stage Boosting Systems in Terms of Performance and Fuel Economy Improvements

2009-04-20
2009-01-1471
Diesel engines have been used in large vehicles, locomotives and ships as more efficient alternatives to the gasoline engines. They have also been used in small passenger vehicle applications, but have not been as popular as in other applications until recently. The two main factors that kept them from becoming the major contender in the small passenger vehicle applications were the low power outputs and the noise levels. A combination of improved mechanical technologies such as multiple injection, higher injection pressure, and advanced electronic control has mostly mitigated the problems associated with the noise level and changed the public notion of the Diesel engine technology in the latest generation of common-rail designs. The power output of the Diesel engines has also been improved substantially through the use of variable geometry turbines combined with the advanced fuel injection technology.
Journal Article

Comparison of Different Boosting Strategies for Homogeneous Charge Compression Ignition Engines - A Modeling Study

2010-04-12
2010-01-0571
Boosted Homogeneous Charge Compression Ignition (HCCI) has been modeled and has demonstrated the potential to extend the engine's upper load limit. A commercially available engine simulation software (GT-PowerÖ) coupled to the University of Michigan HCCI combustion and heat transfer correlations was used to model a 4-cylinder boosted HCCI engine with three different boosting configurations: turbocharging, supercharging and series turbocharging. The scope of this study is to identify the best boosting approach in order to extend the HCCI engine's operating range. The results of this study are consistent with the literature: Boosting helps increase the HCCI upper load limit, but matching of turbochargers is a problem. In addition, the low exhaust gas enthalpy resulting from HCCI combustion leads to high pressures in the exhaust manifold increasing pumping work. The series turbocharging strategy appears to provide the largest load range extension.
Journal Article

Strategy for Mode Transition between Low Temperature Combustion and Conventional Combustion in a Diesel Engine

2013-09-08
2013-24-0058
Mode transition between low temperature combustion (LTC) and conventional combustion was performed by changing the exhaust gas recirculation (EGR) rate from 60% to 0% or vice versa in a light duty diesel engine. The indicated mean effective pressure (IMEP) before mode transition was set at 0.45 MPa, representing the maximum load of LTC in this research engine. Various engine operating parameters (rate of EGR change, EGR path length, and residual gas) were considered in order to investigate their influence on the combustion mode transition. The characteristics of combustion mode transition were analyzed based on the in-cylinder pressure and hydrocarbon (HC) emission of each cycle. The general results showed that drastic changes of power output, combustion noise, and HC emission occurred during the combustion mode transition due to the improper injection conditions for each combustion mode.
Journal Article

Premixed Low Temperature Combustion of Biodiesel and Blends in a High Speed Compression Ignition Engine

2009-04-20
2009-01-0133
The effects of combining premixed, low temperature combustion (LTC) with biodiesel are relatively unknown to this point. This mode allows simultaneously low soot and NOx emissions by using high rates of EGR and increasing ignition delay. This paper compares engine performance and emissions of neat, soy-based methyl ester biodiesel (B100), B20, B50, pure ultra low sulfur diesel (ULSD) and a Swedish, low aromatic diesel in a multi-cylinder diesel engine operating in a late-injection premixed LTC mode. Using heat release analysis, the progression of LTC combustion was explored by comparing fuel mass fraction burned. B100 had a comparatively long ignition delay compared with Swedish diesel when measured by start of ignition (SOI) to 10% fuel mass fraction burned (CA10). Differences were not as apparent when measured by SOI to start of combustion (SOC) even though their cetane numbers are comparable.
Journal Article

Impact of High Sulfur Military JP-8 Fuel on Heavy Duty Diesel Engine EGR Cooler Condensate

2008-04-14
2008-01-1081
Low-sulfur “clean” diesel fuel has been mandated in the US and Europe. However, quality of diesel fuel, particularly the sulfur content, varies significantly in other parts of the world. Due to logistical issues in various theaters of operation, the Army is often forced to rely on local fuel supplies, which exposes vehicles to diesel fuel or jet fuel (JP-8) with elevated levels of sulfur. Modern engines typically use cooled Exhaust Gas Recirculation (EGR) to meet emissions regulations. Using high-sulfur fuels and cooled EGR elevates problems associated with cooler fouling and corrosion of engine components. Hence, an experimental study has been carried out in a heavy-duty diesel engine running on standard JP-8 fuel and fuel doped with 2870 ppm of sulfur. Gas was sampled from the EGR cooler and analyzed using a condensate collection device developed according to a modified ASTM 3226-73T standard. Engine-out emissions were analyzed in parallel.
Journal Article

Hydrocarbons and Particulate Matter in EGR Cooler Deposits: Effects of Gas Flow Rate, Coolant Temperature, and Oxidation Catalyst

2008-10-06
2008-01-2467
Compact heat exchangers are commonly used in diesel engines to reduce the temperature of recirculated exhaust gases, resulting in decreased NOx emissions. These exhaust gas recirculation (EGR) coolers experience fouling through deposition of particulate matter (PM) and hydrocarbons (HCs) that reduces the effectiveness of the cooler. Surrogate tubes have been used to investigate the impacts of gas flow rate and coolant temperature on the deposition of PM and HCs. The results indicate that mass deposition is lowest at high flow rates and high coolant temperatures. An oxidation catalyst was investigated and proved to effectively reduce deposition of HCs, but did not reduce overall mass deposition to near-zero levels. Speciation of the deposit HCs showed that a range of HCs from C15 - C25 were deposited and retained in the surrogate tubes.
Journal Article

Evaluation of Diesel Oxidation Catalyst Conversion of Hydrocarbons and Particulate Matter from Premixed Low Temperature Combustion of Biodiesel

2011-04-12
2011-01-1186
Premixed low temperature combustion (LTC) in diesel engines simultaneously reduces soot and NOx at the expense of increased hydrocarbon (HC) and CO emissions. The use of biodiesel in the LTC regime has been shown to produce lower HC emissions than petroleum diesel; however, unburned methyl esters from biodiesel are more susceptible to particulate matter (PM) formation following atmospheric dilution due to their low volatility. In this study, the efficacy of a production-type diesel oxidation catalyst (DOC) for the conversion of light hydrocarbons species and heavier, semi-volatile species like those in unburned fuel is examined. Experimental data were taken from a high speed direct-injection diesel engine operating in a mid-load, late injection partially premixed LTC mode on ultra-low sulfur diesel (ULSD) and neat soy-based biodiesel (B100). Gaseous emissions were recorded using a conventional suite of analyzers and individual light HCs were measured using an FT-IR analyzer.
Technical Paper

The Effects of Ceramic Coatings on Diesel Engine Performance and Exhaust Emissions

1991-02-01
910460
An experimental investigation of the effects of ceramic coatings on diesel engine performance and exhaust emissions was conducted. Tests were carried out over a range of engine speeds at full load for a standard metal piston and two pistons insulated with 0.5 mm and 1.0 mm thick ceramic coatings. The thinner (0.5 mm) ceramic coating resulted in improved performance over the baseline engine, with the gains being especially pronounced with decreasing engine speed. At 1000 rpm, the 0.5 mm ceramic coated piston produced 10% higher thermal efficiency than the metal piston. In contrast, the relatively thicker coating (1 mm), resulted in as much as 6% lower thermal efficiency compared to baseline. On the other hand, the insulated engines consistently presented an attractive picture in terms of their emissions characteristics. Due to the more complete combustion in the insulated configurations, exhaust CO levels were between 30% and 60% lower than baseline levels.
Technical Paper

A Telemetry Linkage System for Piston Temperature Measurements in a Diesel Engine

1991-02-01
910299
A telemetry linkage system has been developed for piston temperature measurements in a direct-injection diesel engine. In parallel with the development of the telemetry linkage system, fast response thermocouples were installed at three piston locations - two on the bowl surface and one on the crown surface. A novel design was used to achieve electrical continuity between the piston and the connecting rod by means of a flexible steel strap pivoted on the piston skirt. The telemetry linkage system was then used to transport the electrical wires from the thermocouples to the external data acquisition system. A series of tests was run to determine the effects of location and load on piston surface temperatures. Surface temperature profiles varied substantially among the three locations, reflecting the differences in the combustion and heat flow characteristics of their surrounding regions.
Technical Paper

The Effects of Spray, Mixing, and Combustion Model Parameters on KIVA-II Predictions

1991-09-01
911785
The combustion process in a diesel engine was simulated using KIVA-II, a multi-dimensional computer code. The original combustion model in KIVA-II is based on chemical kinetics, and thus fails to capture the effects of turbulence on combustion. A mixing-controlled, eddy break-up combustion model was implemented into the code. Realistic diesel fuel data were also compiled. Subsequently, the sensitivity of the code to a number of parameters related to fuel injection, mixing, and combustion was studied. Spray injection parameters were found to have a strong influence on the model's predictions. Higher injection velocity and shorter injection duration result in a higher combustion rate and peak pressure and temperature. The droplet size specified at injection significantly affects the rate of spray penetration and evaporation, and thus the combustion rate. Contrary to expectation, the level of turbulence at the beginning of the calculation did not affect fuel burning rate.
Technical Paper

Implementation of a Fuel Spray Wall Interaction Model in KIVA-II

1991-09-01
911787
The original spray model in the KIVA-II code includes sub-models for drop injection, breakup, coalescence, and evaporation. Despite the sophisticated structure of the model, predicted spray behavior is not in satisfactory agreement with experimental results. Some of the discrepancies are attributed to the lack of a fuel jet wall impingement sub-model, a wall fuel layer evaporation sub-model, and uncertainties related to the choice of submodels parameters. A spray impingement model based on earlier research has been modified and implemented in KIVA-II. Heat transfer between the fuel layer on the piston surface and the neighboring gaseous charge has also been modelled based on the Colburn Analogy. A series of two dimensional simulations have been performed for a Caterpillar 1Y540 diesel engine to investigate droplet penetration, impingement, fuel evaporation, and chemical reaction, and the dependence of predictions on certain model parameters.
Journal Article

Comprehensive Assessment of Soot Particles from Waste Cooking Oil Biodiesel and Diesel in a Compression Ignition Engine

2015-04-14
2015-01-0809
The effect of biodiesel produced from waste cooking oil (WCO) on the soot particles in a compression ignition engine was investigated and compared with conventional diesel fuel. The indicated mean effective pressure of approximately 0.65 MPa was tested under an engine speed of 1200 revolutions per minute. The fuels were injected at an injection timing of −5 crank angle degree after top dead center with injection pressures of 80 MPa. Detailed characteristics of particulate matters were analyzed in terms of transmission electron microscopy (TEM), thermogravimetric analysis (TGA) and elemental analysis. Soot aggregates were collected on TEM grid by thermophoretic sampling device installed in the exhaust pipe of the engine. High-resolution TEM images revealed that the WCO biodiesel soot was composed of smaller primary particle than diesel soot. The mean primary particle diameter was measured as 19.9 nm for WCO biodiesel and 23.7 nm for diesel, respectively.
Technical Paper

The Effects of Pilot Injection on Combustion in Dimethyl-ether (DME) Direct Injection Compression Ignition Engine

2007-09-16
2007-24-0118
Dimethyl-ether combustion with pilot injection was investigated in a single cylinder direct injection diesel engine equipped with a common-rail injection system. Combustion characteristics and emissions were tested with dimethyl-ether and compared with diesel fuel. The main injection timing was fixed to have the best timings for maximum power output. The total injected fuel mass corresponded to a low heating value of 405 joules per cycle at 800 rpm. The fuel quantity and the injection timing of the pilot injection were varied from 8 to 20% of the total injected mass and from 50 to 10 crank angle degrees before the main injection timing, respectively. Ignition delay decreased with pilot injection. The effects of pilot injection were less significant with DME combustion than with diesel. Pilot injection caused the main combustion to increase in intensity resulting in decreased emissions of hydrocarbons, carbon monoxide and particulate matter.
Technical Paper

Multi-Dimensional Modeling of Natural Gas Ignition Under Compression Ignition Conditions Using Detailed Chemistry

1998-02-23
980136
A detailed chemical kinetic mechanism, consisting of 22 species and 104 elementary reactions, has been used in conjunction with the multi-dimensional reactive flow code KIVA-3 to study autoignition of natural gas injected under compression ignition conditions. Calculations for three different blends of natural gas are performed on a three-dimensional computational grid by modeling both the injection and ignition processes. Ignition delay predictions at pressures and temperatures typical of top-dead-center conditions in compression ignition engines compare well with the measurements of Naber et al. [1] in a combustion bomb. Two different criteria, based on pressure rise and mass of fuel burned, are used to detect the onset of ignition. Parametric studies are conducted to show the effect of additives like ethane and hydrogen peroxide in increasing the fuel consumption rate.
Technical Paper

The Dual-Fueled Homogeneous Charge Compression Ignition Engine Using Liquefied Petroleum Gas and Di-methyl Ether

2007-08-05
2007-01-3619
The combustion, knock characteristics and exhaust emissions in an engine were investigated under homogeneous charge compression ignition operation fueled with liquefied petroleum gas with regard to variable valve timing and the addition of di-methyl ether. Liquefied petroleum gas was injected at an intake port as the main fuel in a liquid phase using a liquefied injection system, while a small amount of di-methyl ether was also injected directly into the cylinder during the intake stroke as an ignition promoter. Different intake valve timings and fuel injection amount were tested in order to identify their effects on exhaust emissions, combustion and knock characteristics. The optimal intake valve open timing for the maximum indicated mean effective pressure was retarded as the λTOTAL was decreased. The start of combustion was affected by the intake valve open timing and the mixture strength (λTOTAL) due to the volumetric efficiency and latent heat of vaporization.
Technical Paper

Simultaneous Reduction of NOX and Soot in a Heavy-Duty Diesel Engine by Instantaneous Mixing of Fuel and Water

2007-04-16
2007-01-0125
Meeting diesel engine emission standards for heavy-duty vehicles can be achieved by simultaneous injection of fuel and water. An injection system for instantaneous mixing of fuel and water in the combustion chamber has been developed by injecting water in a mixing passage located in the periphery of the fuel spray. The fuel spray is then entrained by water and hot air before it burns. The experimental work was carried out on a Rapid Compression Machine and on a Komatsu direct-injection heavy-duty diesel engine with a high pressure common rail fuel injection system. It was also supported by Computational Fluid Dynamics simulations of the injection and combustion processes in order to evaluate the effect of water vapor distribution on cylinder temperature and NOX formation. It has been concluded that when the water injection is appropriately timed, the combustion speed is slower and the cylinder temperature lower than in conventional diesel combustion.
Technical Paper

Optimal Engine Calibration for Individual Driving Styles

2008-04-14
2008-01-1367
Increasing functionality of electronic control units has enhanced our ability to control engine operation utilizing calibration static maps that provide the values of several controllable variables. State-of-the-art simulation-based calibration methods permit the development of these maps with respect to extensive steady-state and limited transient operation of particular driving cycles. However, each individual driving style is different and rarely meets those test conditions. An alternative approach was recently implemented that considers the derivation of these maps while the engine is running the vehicle. In this approach, a self-learning controller selects in real time the optimum values of the controllable variables for the sequences of engine operating point transitions, corresponding to the driver's driving style.
Technical Paper

Studying the Influence of Direct Injection on PCCI Combustion and Emissions at Engine Idle Condition Using Two Dimensional CFD and Stochastic Reactor Model

2008-04-14
2008-01-0021
A detailed chemical model was implemented in the KIVA-3V two dimensional CFD code to investigate the effects of the spray cone angle and injection timing on the PCCI combustion process and emissions in an optical research diesel engine. A detailed chemical model for Primary Reference Fuel (PRF) consisting of 157 species and 1552 reactions was used to simulate diesel fuel chemistry. The model validation shows good agreement between the predicted and measured pressure and emissions data in the selected cases with various spray angles and injection timings. If the injection is retarded to -50° ATDC, the spray impingement at the edge of the piston corner with 100° injection angle was shown to enhance the mixing of air and fuel. The minimum fuel loss and more widely distributed fuel vapor contribute to improving combustion efficiency and lowering uHC and CO emissions in the engine idle condition.
Technical Paper

Effect of Multiple Injection Strategies on Emission and Combustion Characteristics in a Single Cylinder Direct-Injection Optical Engine

2009-04-20
2009-01-1354
The effect of multiple injections in a heavy-duty diesel engine was investigated by focusing on single-pilot injection and double-pilot injection strategies with a wide injection timing range, various injection quantity ratios, and various dwell times. Combustion characteristics were studied through flame visualization and heat release analyses as well as emissions tests. Single-pilot injection resulted in a dramatic reduction in nitrogen oxide and smoke emissions when the injection timing was advanced over 40° CA before the start of injection (BSOI) due to combustion with partially premixed charge compression ignition. A brown-colored flame area, which indicates a very fuel-rich mixture region, was rarely detected when more fuel was injected during single-pilot injection. However, hydrocarbon emission increased up to intolerable levels because fuel wetting on the cylinder wall increased.
Technical Paper

Operating Range of Low Temperature Diesel Combustion with Supercharging

2009-04-20
2009-01-1440
Low temperature diesel combustion with a large amount of exhaust gas recirculation in a direct injection diesel engine was investigated. Tests were carried out under various engine speeds, injection pressures, injection timings, and injection quantities. Exhaust emissions and brake specific fuel consumption were measured at different torque and engine speed conditions. High rates of exhaust gas recirculation led to the simultaneous reduction of nitrogen oxide and soot emissions due to a lower combustion temperature than conventional diesel combustion. However, hydrocarbon and carbon monoxide emissions increased as the combustion temperature decreased because of incomplete combustion and the lack of an oxidation reaction. To overcome the operating range limits of low temperature diesel combustion, increased intake pressure with a modified turbocharger was employed.
X