Refine Your Search

Topic

Author

Search Results

Technical Paper

Heat Flux between Impinged Diesel Spray and Flat Wall

1991-11-01
912460
In a high-speed DI diesel engine, fuel sprays impinge surely on a wall of a piston cavity. Then the phenomenon of the heat transfer between the impinged spray and the wall appears and it has the strong effect on the combustion processes of the engine. The purpose of this study are to clarify basically the heat transfer characteristics. In the experiments, the fuel was injected into the quiescent inert atmosphere with a high temperature under high pressure field, and an evaporative single diesel spray was impinging upon a flat wall. And, the temperature distribution on the wall surface in a radial direction was detected by the Loex-Constantan thin film thermo-couples. Thus, the heat flux between the impinged spray and the wall surface was calculated from the temperature profile within the wall by Fourier's equation using the finite difference method, under the assumption of the one-dimensional heat conduction.
Technical Paper

Effect of ADOIL TAC Additive on Diesel Combustion

1991-11-01
912555
Some papers on the combustion in a diesel engine have been already presented to discuss the effect of the additive called ADOIL TAC. A bottom view DI diesel engine driven at 980rpm with no load was used in the experiment presented here, in order to make clear this effect. JIS second class light diesel fuel oil was injected through a hole nozzle at the normal test run. The additive was intermixed 0.01 vol. % in this fuel oil, in the experiments to compare with the normal combustion. The flame was taken by direct high-speed photography. Profiles of flame temperature and KL were detected on the film by image processing, applying the two-color method. Soot was visualized by high-speed laser shadowgraphy, and the heat release rate was calculated using the cylinder pressure diagram. Discussion on the effect of the additive on the combustion phenomena was made by using all the data.
Technical Paper

A Fundamental Study on Ignition Characteristics of Two-Component Fuel in a Diesel Spray

2006-10-16
2006-01-3383
The authors have explored the potential of fuel to control spray and its combustion processes in a diesel engine. Fuel has some potential for low emission and high thermal efficiency because its volatility and ignitability are one of the ultimate performing factors of the engines. In present study, the ignition process of mixed fuel spray was investigated in a constant volume combustion vessel and in a rapid compression and expansion machine, The ignition delay based on the diagram of rate of the heat release, the imaging of natural flame emissions and the numerical simulation were carried out to clarify the effect of the physical and chemical properties of mixed fuel on ignition characteristics.
Technical Paper

Effect of Initial Fuel Temperature on Spray Characteristics of Multicomponent Fuel

2020-09-15
2020-01-2113
Fuel design concept has been proposed for low emission and combustion control in engine systems. In this concept, the multicomponent fuels, which are mixed with a high volatility fuel (gasoline or gaseous fuel components) and a low volatility fuel (gas oil or fuel oil components), are used for artificial control of fuel properties. In addition, these multicomponent fuels can easily lead to flash boiling which promote atomization and vaporization in the spray process. In order to understand atomization and vaporization process of multicomponent fuels in detail, the model for flash boiling spray of multicomponent fuel have been constructed and implemented into KIVA3V rel.2. This model considers the detailed physical properties and evaporation process of multicomponent fuel and the bubble nucleation, growth and disruption in a nozzle orifice and injected fuel droplets.
Journal Article

Simultaneous Reduction of Pressure Rise Rate and Emissions in a Compression Ignition Engine by Use of Dual-Component Fuel Spray

2012-10-23
2012-32-0031
Ignition, combustion and emissions characteristics of dual-component fuel spray were examined for ranges of injection timing and intake-air oxygen concentration. Fuels used were binary mixtures of gasoline-like component i-octane (cetane number 12, boiling point 372 K) and diesel fuel-like component n-tridecane (cetane number 88, boiling point 510 K). Mass fraction of i-octane was also changed as the experimental variable. The experimental study was carried out in a single cylinder compression ignition engine equipped with a common-rail injection system and an exhaust gas recirculation system. The results demonstrated that the increase of the i-octane mass fraction with optimizations of injection timing and intake oxygen concentration reduced pressure rise rate and soot and NOx emissions without deterioration of indicated thermal efficiency.
Technical Paper

Characteristics of Transient Gas Diffusion Flame

1997-10-01
972965
CNG is one of the future fuel for a CI engine. Recently, the general tendency is the use of the high pressure injection system over 100 MPa in a CI engine for the near future severe regulation. Combustion phenomenon in a CI engine with such injection system is like a transient gas diffusion flame. The flow in a gas diffusion flame was investigated by the particle image velocimetry on its 2-D images, the relative soot concentration, the temperature and the relative CO2 concentration was detected in the experiments. And the model of transient gas diffusion flame was constructed by use of experimental data.
Technical Paper

Controlling PCCI Combustion with Mixed Fuel - Application of Flashing Spray to Early Injection

2007-04-16
2007-01-0624
A diesel engine operating in premixed charge compression ignition (PCCI) mode promises the reduction of engine-out emissions of NOx and particulate matter. A serious issue for PCCI operation with the early injection timing during the compression stroke is the difficulty of controlling the mixture formation process. In this study, a mixed fuel consisting of high volatility fuel and high ignitability one is applied in order to develop a control technique for the mixture preparation. In particular, we focuses on a flash boiling phenomenon of mixed fuel. For pure substance, the quality of flashing spray is dominated by the degree of superheat. In contrast, that of mixed fuel is affected much by low boiling point fuel.
Technical Paper

Study on Characteristics of Auto-Ignition and Combustion of Unsteady Synthetic Gas Jet

2007-04-16
2007-01-0629
It is thought that the synthetic gas, including hydrogen and carbon monoxide, has a potential to be an alternative fuel for internal combustion engines, because a heating value of the synthetic gas is higher than one of hydrogen or natural gas. A purpose of this study is to acquire stable auto-ignition and combustion of the synthetic gas which is supposed to be applied into a direct-injection compression ignition engine. In this study, the effects of ambient gas temperatures and oxygen concentrations on auto-ignition characteristics of the synthetic gas with changing percentage of hydrogen (H2) or carbon monoxide (CO) concentrations in the synthetic gas. An electronically-controlled, hydraulically-actuated gas injector was used to control a precise injection timing and period of gaseous fuels, and the experiments were conducted in an optically accessible, constant-volume combustion chamber under simulated quiescent diesel engine conditions.
Technical Paper

Soot formation/oxidation and fuel-vapor concentration in a DI diesel engine using laser-sheet imaging method

2000-06-12
2000-05-0078
Four kinds of optical measurements were performed to investigate the process of soot formation and oxidation in a direct-injection (DI) diesel engine. Measurements were carried out in an optically accessible DI diesel engine that allows planar laser sheet for combustion diagnostics to enter the combustion chamber either horizontally or along the axis of the fuel jet. The temporal and spatial distribution of soot particles has been investigated using the laser- induced incandescence (LII) and high-speed direct photography. Fuel vapor concentration, which is directly linked to the soot formation process in diesel combustion, has been deduced from the images obtained by the measurements of laser shadowgraph and elastic Mie scattering. According to the experimental results, soot formation begins to occur near the injector nozzle in which a fuel-rich mixture is distributed with a homogeneous condition. LII signal is dominated by the fuel vapor concentration in initial combustion period.
Technical Paper

Effect of Breakup Model on Diesel Spray Structure Simulated by Large Eddy Simulation

2009-09-13
2009-24-0024
LES of non-evaporative diesel spray have been performed to investigate the effects of breakup models of Modified TAB, WAVE and KHRT model on computational results. KIVALES that is LES version of KIVA code was used for base code. In our KIVALES, CIP scheme was incorporated in order to suppress the numerical diffusion. Results showed that the breakup model is significantly affected on the calculated spray shape, because the droplet diameter determined by breakup models affects on the transmittance of the droplet momentum into the ambient gas, the evolution of the vortex structure in the gas phase and the droplet dispersion by the vortex structure.
Technical Paper

On-Board Measurement of Engine Performance and Emissions in Diesel Vehicle Operated with Bio-diesel Fuel

2004-03-08
2004-01-0083
This paper describes the results of on-board measurement of engine performance and emissions in diesel vehicle operated with bio-diesel fuels. Here, two waste-cooking oils were investigated. One fuel is a waste-cooking oil methyl esters. This fuel is actually applied to a garbage collection vehicle with DI diesel engine (B100) and the city bus (B20; 80% gas oil is mixed into B100 in volume) as an alternative fuel of gas oil in Kyoto City. Another one is a fuel with ozone treatment by removing impurities from raw waste-cooking oils. Here, in order to improve the fuel properties, kerosene is mixed 70% volume in this fuel. This mixed fuel (i-BDF) is applied into several tracks and buses in Wakayama City. Then, these 3 bio-diesel fuels were applied to the on-board experiments and the results were compared with gas oil operation case.
Technical Paper

Flame Structure and Combustion Characteristics in Diesel Combustion Fueled with Bio-diesel

2004-03-08
2004-01-0084
The Flame structure and combustion characteristics for two waste-cooking oils were investigated in detail. One fuel is the waste-cooking oil methyl esters. This fuel is actually applied to the garbage collection vehicle with DI diesel engine (B100) and the city bus (B20; 80% gas oil is mixed into B100 in volume) as an alternative fuel of gas oil in Kyoto City. Another one is the fuel with ozone treatment by removing impurities from raw waste-cooking oils. Here, in order to improve the fuel properties, kerosene is mixed 70% volume in this fuel. This mixed fuel (i-BDF) is applied into several tracks and buses in Wakayama City. In the experiments, the used fuels were gas oil, i-BDF, B100 and B20. Spray characteristics and basic combustion properties were measured inside a rapid compression and an expansion machine (RCEM).
Technical Paper

Vaporization Characteristics and Liquid-Phase Penetration for Multi-Component Fuels

2004-03-08
2004-01-0529
The maximum liquid-phase penetration and vaporization behavior was investigated by using simultaneous measurement for mie-scattered light images and shadowgraph ones. The objective of this study was to analyze effect of variant parameters (injection pressure, ambient gas condition and fuel temperature) and fuel properties on vaporization behavior, and to investigate liquid phase penetration for the single- and multi-component fuels. The experiments were conducted in a constant-volume vessel with optical access. Fuel was injected into the vessel with electronically controlled common rail injector.
Technical Paper

Detailed Kinetic Modeling and Laser Diagnostics of Soot Formation Process in Diesel Jet Flame

2004-03-08
2004-01-1398
This work investigates the soot formation process in diesel jet flame using a detailed kinetic soot model implemented into the KIVA-3V multidimensional CFD code and 2D imaging by use of time-resolved laser induced incandescence (LII). The numerical model is based on the KIVA code which is modified to use CHEMKIN as the chemistry solver using Message Passing Interface (MPI). This allows for the chemical reactions to be simulated in parallel on multiple CPUs. The detailed soot model used is based on the method of moments, which begins with fuel pyrolysis, followed by the formation of polycyclic aromatic hydrocarbons, their growth and coagulation into spherical particles, and finally, surface growth and oxidation of the particles. The model can describe the spatial and temporal characteristics of soot formation processes such as soot precursors distributions, nucleation rate and surface reaction rate.
Technical Paper

Analysis of Diesel Spray Structure by Using a Hybrid Model of TAB Breakup Model and Vortex Method

2001-03-05
2001-01-1240
This study proposes a hybrid model which consists of modified TAB(Taylor Analogy Breakup) model and DVM(Discrete Vortex Method). In this study, the simulation process is divided into three steps. The first step is to analyze the breakup of droplet of injected fuel by using modified TAB model. The second step based on the theory of Siebers' liquid length is analysis of spray evaporation. The liquid length analysis of injected fuel is used for connecting both modified TAB model and DVM. The final step is to reproduce the ambient gas flow and inner vortex flow injected fuel by using DVM. In order to examine the hybrid model, an experiment of a free evaporating fuel spray at early injection stage of in-cylinder like conditions had been executed. The numerical results calculated by using the present hybrid model are compared with the experimental ones.
Technical Paper

The Effect of Fuel-Vapor Concentration on the Process of Initial Combustion and Soot Formation in a DI Diesel Engine Using LII and LIEF

2001-03-05
2001-01-1255
A phenomenological or empirical model based on experimental results obtained from various optical measurements is critical for the understanding of DI diesel combustion phenomena as well as for the improvement of its emission characteristics. Such a model could be realized by the application of advanced optical measurement, which is able to isolate a particular phenomenon amongst complicated physical and chemical interactions, to a DI diesel combustion field. The authors have conducted experimental studies to clarify the combustion characteristics of unsteady turbulent diffusion flames in relation to the soot formation and oxidation process in a small-sized DI diesel engine. In the present study, the effect of fuel vapor concentration on the process of early combustion and soot formation has been investigated using several optical measurements.
Technical Paper

Multicomponent Fuel Consideration for Spray Evaporation Field and Spray-Wall Interaction

2001-03-05
2001-01-1071
It is expected that the analysis of the evaporation process for multicomponent fuels such as actual fuels like gasoline and diesel gas oil could be performed to assess more accurately the mixture preparation field inside the cylinder of D.I.S.I engines and diesel engines. In this paper, we suggested the importance of this multicomponent fuel consideration relating to the mixture formation and combustion characteristics from the basis of their own fuel physical and chemical properties. Then, we introduce a treatment for the phase change of a multicomponent solution through the formation of two-phase regions with the basis of chemical-thermodymical liquid-vapor equilibrium. Next, we analyze the distillation properties of a multicomponent fuel as well as the evaporation process of a multicomponent single droplet by use of the chemical-thermodymical analysis.
Technical Paper

Detailed Chemical Kinetic Modeling of Diesel Spray Combustion with Oxygenated Fuels

2001-03-05
2001-01-1262
This paper confirms a structure for the soot formation process inside a burning diesel jet plume of oxygenated fuels. An explanation of how the soot formation process changes by the use of oxygenated fuel in comparison with that for using a conventional diesel fuel, and why oxygenated fuel drastically suppresses the soot formation has been derived from the chemical kinetic analysis. A detailed chemical kinetic mechanism, which is combined with various proposed chemical kinetic models including normal paraffinic hydrocarbon oxidation, oxygenated hydrocarbon oxidation, and poly-aromatic hydrocarbon (PAH) formation, was developed in present study. The calculated results are presented to elucidate the influence of fuel mixture composition and fuel structure, especially relating to oxygenated fuels, on PAH formation. The analysis also provides a new insight into the initial soot formation process in terms of the temperature range of PAH formation.
Technical Paper

The Structure Analysis of Evaporative Diesel Spray

2002-03-04
2002-01-0498
This paper analyzes heterogeneous distribution of branch-like structure at downstream region of the diesel spray. The liquid and vapor phase of the spray are obtained by a 35mm still camera and CCD camera in order to investigate spray structure of evaporative diesel spray. The many previous studies about diesel spray structure have yet stayed in the analyses of 2-D structure, and there is little information which is concerned with 3-D structure analysis of evaporative spray. The heterogeneous distribution of droplets in inner spray affects the mixture formation of diesel spray, and the combustion characteristics of the diesel engines. In this study, the laser beam of 2-D plane was used in order to investigate 3-D structure of evaporative spray. The incident laser beam was offset on central axis of the spray.
Technical Paper

Fundamental Study of Single Droplet and Droplets Array Combustion with Premixed Gas

2002-03-04
2002-01-0648
In the actual spray combustion fields, coupled combustion process should be occurred, between the pre-evaporate fuel component and remaining liquid droplets. Therefore it is insufficient to clarify the fundamental spray combustion mechanism with use of only droplet or only premixed mixture analyze method. In this study, the premixed mixture - droplets coupled combustion field was focused as a model of the actual spray combustion field. In the experiments, the effect of the flame pattern and the combustion rate constant by the interference between the droplets were clarified with the variation of fuels used by droplets. Besides, the effect of the premixed gas surrounding the droplets was clarified by the experiment on coupled combustion. The experiments were carried out under the normal gravity field and the micro gravity field to estimate the effect of convection in combustion field
X