Refine Your Search

Search Results

Viewing 1 to 8 of 8
Journal Article

A De-Spin and Wings-Leveling Controller for a 40 mm Hybrid Projectile

2013-09-17
2013-01-2262
A Hybrid Projectile (HP) is a round that transforms into a UAV after being launched. Some HP's are fired from a rifled barrel and must be de-spun and wings-level for lifting surfaces to be deployed. Control surfaces and controllers for de-spinning and wings-leveling were required for initial design of an HP 40 mm. Wings, used as lifting surfaces after transformation, need to be very close to level with the ground when deployed. First, the tail surface area needed to de-spin a 40 mm HP was examined analytically and simulated. Next, a controller was developed to maintain a steady de-spin rate and to roll-level the projectile in preparation of wing deployment. The controller was split into two pieces, one to control de-spin, and the other for roll-leveling the projectile. An adaptable transition point for switching controllers was identified analytically and then adjusted by using simulations.
Technical Paper

Transient Response in a Dynamometer Power Absorption System

1992-02-01
920252
In order to obtain meaningful analyses of exhaust gas emissions and fuel economy for a heavy duty vehicle from a chassis dynamometer, the accurate simulation of road load characteristics is crucial. The adjusted amount of power to be absorbed by the chassis dynamometer during road driving of the tested vehicle needs to be calculated. In this paper, the performance of the chassis dynamometer under transient load cycle operations is discussed and the transient response of the power absorption system is presented. In addition, the design criteria of the chassis dynamometer used to test heavy duty vehicles under steady and transient load is described.
Technical Paper

A Comparison of Wing Stowing Designs Focused on Increased Continuous Payload Volume for Projectile Applications

2011-10-18
2011-01-2782
West Virginia University's Mechanical and Aerospace Engineering Department is studying the benefits of continuous payload volume in transforming projectiles. Continuous payload volume is the single largest vacancy in a vehicle that may be utilized. Currently there is a market for transforming projectiles, which are gun launched (or tube launched) vehicles stowed in an initial configuration; which deploy wings once exiting the launcher to become small unmanned aircraft. WVU's proposed design uses a helical hinge, which allows the wing sections to be externally stowed outside the UAV's fuselage. Additionally, the design positions the vehicles wing sections sub-bore (or smaller than the guns internal diameter), and flush (smooth and planer) to the surface of the fuselage. The typical transforming winged projectile design considered, stores its wing sections along the center axis of the fuselage. This bisects the payload space and limits the continuous payload carrying potential.
Technical Paper

Hybrid Projectile Transformation Condition Detection System for Extended Selectable Range

2013-09-17
2013-01-2203
A Hybrid Projectile (HP) is a tube launched munition that transforms into a gliding UAV, and is currently being researched at West Virginia University. In order to properly transform, the moment of transformation needs to be controlled. A simple timer was first envisioned to control transformation point for maximum distance. The distance travelled or range of an HP can directly be modified by varying the launch angle. In addition, an internal timer would need to be reprogrammed for any distance less than maximum range due to the nominal time to deployment varying with launch angle. A method was sought for automatic wing deployment that would not require reprogramming the round. A body angle estimation system was used to estimate the pitch of the HP relative to the Earth to determine when the HP is properly oriented for the designed glide slope angle. It also filters out noise from an inertial measurement unit (IMU).
Technical Paper

Investigation of Faceted Wing Sections for Low Reynolds Number Applications

2013-09-17
2013-01-2097
This paper documents the numerical and experimental investigation of a new type of wing section being developed at West Virginia University that shows good potential for use in wings in low Reynolds number flows. These wing sections have been designed with a minimum number of flat sides, or facets, which are arranged in such a way as to promote flow over the surface similar to traditional smooth airfoil shapes, but without the complexity of the typically highly contoured airfoil form. 2D numerical techniques have been employed to determine appropriate geometric limitations of the wing section facets, and finite span wings comprised of these faceted wing sections have been tested in wind tunnels in wing-only and wing-plus-body configurations to determine their basic aerodynamic performance. The latest results of these efforts, as well as some speculation as to the mechanisms at work are presented.
Technical Paper

Review of Parameters Affecting Stability of Partially Filled Heavy-Duty Tankers

1999-11-15
1999-01-3709
Partially filled tanker trucks are susceptible to rollover instabilities due to fluid sloshing. Due to the catastrophic nature of accidents involving the rollover of tanker trucks, several investigations have been conducted on the parameters affecting stability of partially filled heavy-duty tankers. Since stability of heavy-duty tankers undergoing on-road maneuvers such as braking, and/or lane changing has been an issue that concerned many researchers for a long time, a literature review has been conducted which underlines the most important contributions in this field. This review covers work done in the field of fluid-structure interaction, yaw and roll stability of heavy-vehicles, and fluid-vehicle dynamic interaction. In addition, vehicle stability issues are addressed such as jack-knifing, side slipping, vehicle geometry and container geometry among others.
Technical Paper

Quantification of Energy Pathways and Gas Exchange of a Small Port Injection SI Two-Stroke Natural Gas Engine Operating on Different Exhaust Configurations

2018-04-03
2018-01-1278
This paper examines the energy pathways of a 29cc air-cooled two-stroke engine operating on natural gas with different exhaust geometries. The engine was operated at wide-open-throttle at a constant speed of 5400 RPM with ignition adjusted to yield maximum brake torque while the fueling was adjusted to examine both rich and lean combustion. The exhaust configurations examined included an off-the-shelf (OTS) model and two other custom models designed on Helmholtz resonance theory. The custom designs included both single and multi-cone features. Out of the three exhaust systems tested, the model with maximum trapping efficiency showed a higher overall efficiency due to lower fuel short-circuiting and heat transfer. The heat transfer rate was shown to be 10% lower on the new designs relative to OTS model.
Technical Paper

Investigation of On-Road Crosswinds on Interstate Tractor-Trailer Aerodynamic Efficiency

2014-04-01
2014-01-0608
Heavy duty tractor-trailers under freeway operations consume about 65% of the total engine shaft energy to overcome aerodynamic drag force. Vehicles are exposed to on-road crosswinds which cause change in pressure distribution with a relative wind speed and yaw angle. The objective of this study was to analyze the drag losses as a function of on-road wind conditions, on-road vehicle position and trajectory. Using coefficient of drag (CD) data available from a study conducted at NASA Ames, Geographical Information Systems model, time-varying weather data and road data, a generic model was built to identify the yaw angles and the relative magnitude of wind speed on a given route over a given time period. A region-based analysis was conducted for a study on interstate trucking operation by employing I-79 running through West Virginia as a case study by initiating a run starting at 12am, 03/03/2012 out to 12am, 03/05/2012.
X