Refine Your Search

Topic

Author

Affiliation

Search Results

Book

Honda R&D Technical Review April 2021

2021-04-01
Honda R&D Technical Review is a periodical containing research papers related to Honda R&D Center activities worldwide that cover automobile, motorcycle, power products, aircraft engine, and other fundamental technologies. Honda Motor offers a book for the April 2021 issue with 104 pages containing 12 papers focusing on the following latest topics: Technology for Prediction of Contactor Noise for Electric-powered Vehicle Batteries Reduction of Internal Resistance in High Capacity Lithium-ion Batteries with 3D Lattice-structured Electrode Predictive Technique for Seat Belt Submarining Injury by Triaxial Iliac Load Cell
Standard

Combination Tail and Floodlamp for Industrial Equipment

2003-05-15
CURRENT
J94_200305
This SAE Standard provides performance and general design requirements and related test procedures for a combination tail and floodlamp for use on industrial wheeled equipment that may be operated on public roads.
Standard

AIRCRAFT SOFTWARE COMMON CONFIGURATION REPORTING

2019-08-13
CURRENT
ARINC843-1
This standard defines a common configuration report format that can be retrieved from an aircraft for use by ground tools and maintenance personnel. Reports will be generated in Extensible Markup Language (XML) format and structured as defined by this document. Several optional elements and attributes are defined to allow flexibility for a given report. This standard provides aircraft manufacturers, regulatory agencies, and airlines a format standard for aircraft configuration reporting, and facilitates automated comparison of configuration data reports (e.g., authorized versus as flying, etc.).
Standard

AIRCRAFT DATA NETWORK, PART 1, SYSTEMS CONCEPTS AND OVERVIEW

2019-06-20
CURRENT
ARINC664P1-2
The purpose of this document is to provide an overview of data networking standards recommended for use in commercial aircraft installations. These standards provide a means to adapt commercially defined networking standards to an aircraft environment. It refers to devices such as bridges, switches, routers and hubs and their use in an aircraft environment. This equipment, when installed in a network topology, can optimize data transfer and overall avionics performance.
Standard

OBSOLESCENCE MANAGEMENT STRATEGIES FOR COMMERCIAL AIRCRAFT

2019-05-14
CURRENT
ARINC662-1
The purpose of this document is to establish guidelines that should be observed during initial design, production, and maintenance of aircraft components, and to present short-term and long-term strategies to minimize the costs and impacts associated with decreasing availability of components.
Standard

AIRCRAFT AUTONOMOUS DISTRESS TRACKING (ADT)

2019-08-26
CURRENT
ARINC680
This document describes the technical requirements, architectural options, and recommended interface standards to support an Autonomous Distress Tracking (ADT) System intended to meet global regulatory requirements for locating aircraft in distress situations and after an accident. This document is prepared in response to International Civil Aviation Organization (ICAO) and individual Civil Aviation Authorities (CAAs) initiatives.
Standard

ONBOARD SECURE WI-FI NETWORK PROFILE STANDARD

2021-06-18
CURRENT
ARINC687
This document defines a standard implementation for strong client authentication and encryption of Wi-Fi-based client connections to onboard Wireless LAN (WLAN) networks. WLAN networks may consist of multi-purpose inflight entertainment system networks operating in the Passenger Information and Entertainment System (PIES) domain, dedicated aircraft cabin wireless networks or localized Aircraft Integrated Data (AID) devices operating in the Aircraft Information Services (AIS) domain. The purpose of this document is to focus on the client devices requiring connections to these networks such as electronic flight bags, flight attendant mobile devices, onboard Internet of Things (IoT) devices, AID devices (acting as clients) and mobile maintenance devices. Passenger devices are not within the focus of this document.
Standard

TIMELY RECOVERY OF FLIGHT DATA (TRFD)

2021-08-06
CURRENT
ARINC681
The difficulty in locating crash sites has prompted international efforts for alternatives to quickly recover flight data. This document describes the technical requirements and architectural options for the Timely Recovery of Flight Data (TRFD) in commercial aircraft. ICAO and individual Civil Aviation Authorities (CAAs) levy these requirements. The ICAO Standards and Recommended Practices (SARPs) and CAA regulations cover both aircraft-level and on-ground systems. This report also documents additional system-level requirements derived from the evaluation of ICAO, CAA, and relevant industry documents and potential TRFD system architectures. It describes two TRFD architectures in the context of a common architectural framework and identifies requirements. This report also discusses implementation recommendations from an airplane-level perspective.
Standard

MARK I AVIATION KU-BAND AND KA-BAND SATELLITE COMMUNICATION SYSTEM PART 1 PHYSICAL INSTALLATION AND AIRCRAFT INTERFACES

2019-09-19
CURRENT
ARINC791P1-3
This standard sets forth the desired characteristics of Aviation Ku-band Satellite Communication (Satcom) and Ka-band Satcom Systems intended for installation in all types of commercial air transport aircraft. The intent of this characteristic is to provide guidance on the interfaces, form, fit, and function of the systems. This document also describes the desired operational capability of the equipment needed to provide a broadband transport link that can be used for data, video, and voice communications typically used for passenger communications and/or entertainment. The systems described in this characteristic are not qualified, at this writing, for aviation safety functions.
Standard

EXTENSIBLE MARKUP LANGUAGE (XML) ENCODING AND COMPRESSION STANDARD

2019-01-18
CURRENT
ARINC814-1
ARINC 814 defines an XML encoding and compression standard for aviation. It is based on the Open Geospatial Consortium (OGC) Binary XML document. Binary XML encoding is extended in a way that is both flexible and robust. Compression is added on top of the binary encoding. ARINC 814 is expected to be used with Aeronautical Databases, in particular, ARINC Specification 813: Embedded Interchange Format for Terrain Databases, ARINC Specification 815: Embedded Interchange Format for Obstacle Databases, and ARINC Specification 816: Embedded Interchange Format for Airport Mapping Database.
Standard

EMBEDDED INTERCHANGE FORMAT FOR OBSTACLE DATABASES

2018-12-21
CURRENT
ARINC815
This document defines an open encoding format for obstacle databases. This format, when designed and implemented, will enable a quick, economic, and efficient use of Obstacle Databases (ObsDBs). However, since industry does not require applications to be standardized, data interpretation is not addressed in this document.
Standard

EMBEDDED INTERCHANGE FORMAT FOR TERRAIN DATABASES

2018-12-21
CURRENT
ARINC813
This document defines an open encoding format for terrain databases. This format, when designed and implemented, will enable a quick, economic, and efficient use of Terrain Databases (TerrDBs). However, since industry does not require applications to be standardized, data interpretation is not addressed in this document.
Collection

Advanced Battery Technology, 2010

2010-06-01
Batteries pose one of the biggest challenges and opportunities on the road to electrifying the automobile. The success or failure of hybrid, plug-in, and electric vehicles is highly dependent on their batteries. The 8 papers in this technical paper collection focus on modeling of cells and packs behavior, plug-in hybrid vehicle batteries, and safety standards.
Book

Sensors: Advanced Safety (DVD)

2015-04-15
"Spotlight on Design" features video interviews and case study segments, focusing on the latest technology breakthroughs. Viewers are virtually taken to labs and research centers to learn how design engineers are enhancing product performance/reliability, reducing costs, improving quality, safety or environmental impact, and achieving regulatory compliance. Sensors are essential to the safety, efficiency, and dependability of modern vehicles. Crash sensors can anticipate a collision faster than humans would, and tire pressure sensors can alert the driver or pilot in case action is needed. In the episode "Sensors: Advanced Safety" (20:36) Continental engineers look at the evolution of passive safety systems, discuss the changes in sensors over the last ten years and what is coming next. Engineers at Meggitt demonstrate how tire pressure monitoring system sensors for aerospace are built and tested.
Book

Automated Vehicles: Sensors and Future Technologies (DVD)

2015-04-15
"Spotlight on Design" features video interviews and case study segments, focusing on the latest technology breakthroughs. Viewers are virtually taken to labs and research centers to learn how design engineers are enhancing product performance/reliability, reducing cost, improving quality, safety or environmental impact, and achieving regulatory compliance. In the episode "Automated Vehicles: Sensors and Future Technologies" (24:31), highly automated driving is looked at in detail as the culmination of years of research in automotive technology, sensors, infrastructure, software, and systems integration. Real-life case studies show how organizations are actually developing solutions to the challenge of making cars safer with less driver intervention. IAV Automotive Engineering demonstrates how a highly automated vehicle capable of lane changing was created.
Book

Insight: Automated Vehicles: Converging Sensor Data (DVD)

2015-04-15
"Spotlight on Design: Insight" features an in-depth look at the latest technology breakthroughs impacting mobility. Viewers are virtually taken to labs and research centers to learn how design engineers are enhancing product performance/reliability, reducing cost, improving quality, safety or environmental impact, and achieving regulatory compliance. Automated driving is made possible through the data acquisition and processing of many different kinds of sensors working in unison. Sensors, cameras, radar, and lidar must work cohesively together to safely provide automated features. In the episode "Automated Vehicles: Converging Sensor Data" (8:01), engineers from IAV Automotive Engineering discuss the challenges associated with the sensor data fusion, and one of Continental North America’s technical teams demonstrate how sensors, radars, and safety systems converge to enable higher levels of automated driving.
Book

Diagnostics and Prognostics: Proactive Maintenance and Failure Prevention (DVD)

2015-04-15
"Spotlight on Design" features video interviews and case study segments, focusing on the latest technology breakthroughs. Viewers are virtually taken to labs and research centers to learn how design engineers are enhancing product performance/reliability, reducing cost, improving quality, safety or environmental impact, and achieving regulatory compliance. In the episode "Diagnostics and Prognostics: Proactive Maintenance and Failure Prevention" (21:04), Delphi engineers explain how they leverage the growing number of sensors and computing power in vehicles to diagnose and proactively solve emerging mechanical or electronic problems, before a breakdown occurs. This video also looks at the next generation of automotive telematics, with HEM Data demonstrating how in-vehicle data acquisition is used to monitor the inner workings of vehicles.
X