Refine Your Search

Search Results

Viewing 1 to 11 of 11
Technical Paper

Occupant Protection in Rear-end Collisions: II. The Role of Seat Back Deformation in Injury Reduction

1991-10-01
912914
The National Highway Traffic Safety Administration (NHTSA) has recently opened a rulemaking docket seeking comments on the design of automobile seats and their performance in rear Impacts. There are two philosophies of seat design: one advocates rigid seats, the other advocates seats which yield in a controlled manner. A review of the legislative history of seat back design standards indicates that yielding seats have historically been considered a better approach for passenger cars. The design characteristics of current production automobile seats are evaluated and show no significant changes over the past three decades. Concerns about the performance of rigid seat backs in real world rear impacts are discussed, specifically increased injury exposure due to ramping, rebound and out-of-position occupants.
Technical Paper

A Perspective on Side Impact Occupant Crash Protection

1990-02-01
900373
The NHTSA notices of proposed rulemaking on side impact protection have focused worldwide attention on one of the most difficult and frustrating efforts in automobile crash safety. Traditional vehicle design has evolved obvious structural contrasts between the side of the struck vehicle and the front of the striking vehicle. Protection of near-side occupants from intruding door structure is a most perplexing engineering challenge. Much useful and insightful engineering work has been done in conjunction with NHTSA's proposed rulemaking. However, there are many major engineering issues which demand further definition before reasonable side impact rulemaking test criteria can be finalized. This paper reviews recent findings which characterize the human factors, biomechanics, and occupant position envelope of the typical side impact crash victim.
Technical Paper

Application of Kinematic Concepts to Side Impact Injury Analysis

1990-02-01
900375
An understanding of fundamental kinematic relationships among the several deforming surfaces of side-impacting bullet and target vehicle, occupant protection system and occupant is fundamental to rational design of crash injury counter-measures. Unfortunately, such understanding is not easy to achieve. Side impacts address the full range of bodily contacts and injuries in a way that challenges analysis. Each bodily area and organ requires individual consideration for adequate injury protection. This paper presents a simplified graphical analysis of occupant kinematics and injury exposure applied specifically to the NHTSA-proposed crabbed moving deformable barrier (MDB) compartment impact, as described in NHTSA's Notice of Proposed Rulemaking (NPRM) for Federal Motor Vehicle Safety Standard (FMVSS) 214, issued in January of 1988 [NHTSA 1988 (1)*]. Projections are offered regarding the potential of thoracic injury counter-measures.
Technical Paper

Pulse Shape and Duration in Frontal Crashes

2007-04-16
2007-01-0724
Understanding of events within the history of a crash, and estimation of the severity of occupant interior collisions depend upon an accurate assessment of crash duration. Since this time duration is not measured independently in most crash test reports, it must usually be inferred from interpretations of acceleration data or from displacement data in high-speed film analysis. The significant physical effects related to the crash pulse are often essential in reconstruction analyses wherein the estimation of occupant interior “second collision” or airbag sensing issues are at issue. A simple relation is presented and examined which allows approximation of the approach phase and separation phase kinematics, including restitution and pulse width. Building upon previous work, this relation allows straightforward interpretation of test data from related publicly available test reports.
Technical Paper

Performance of Rear Seat Belt Restraints

2003-03-03
2003-01-0155
Field experience has consistently indicated that lap-only belts and lap-shoulder belts perform well and about equally in prevention of fatalities and serious injuries in the rear seating positions. Analyses based on overall usage and injury figures from the Fatal Analysis Reporting System (FARS), double-pair analysis of FARS data, and still older data bases have shown that, in the rear outboard seating positions, injury rates are about the same for lap-only and lap-shoulder belted crash occupants. Although sparse, recently available field data from the 1988-2001 National Analysis Sampling System / Crashworthiness Data System (NASS/CDS) files confirm the finding that, when used by rear seat occupants, lap-only belts perform about equally with lap-shoulder belts as countermeasures for serious and fatal injury in severe frontal crashes.
Technical Paper

LIMITATIONS OF ATB/CVS AS AN ACCIDENT RECONSTRUCTION TOOL

1997-02-24
971045
Occupant simulation models have been used to study trends or specific design changes in “typical” accident modes such as frontal, side, rear, and rollover. This paper explores the usage of the Articulated Total Body Program (ATB) as an accident reconstruction tool. The importance of model validation is discussed. Specific areas of concern such as the contact model, force-deflection data, occupant parameters, restraint system models, head/neck loadings, padding, and intrusion are discussed in the context of accident reconstruction.
Technical Paper

An Inexpensive Automobile Crash Recorder

1974-02-01
740567
One of the greatest challenges faced in the design of realistic occupant protection systems is an accurate statistical model of what is really needed. The paucity of data is this realm hinders designers of standards alike. Ideally, a model of crash statistics would correlate, for significant accident modes, injury level (as measured by AMA Abreviated Injury Scale “AIS”) with some adequate measure of crash intensity. Having this information, not only could the required level of safety design be ascertained, but also the justifiable economic expenditure could be estimated. This paper treats the statistical basis for deployment of a data retrival system. It provides a basis for estimates of the amount of data required, the number of vehicles to be instrumented, the crash severity trigger levels, and the economics of recorder installation, for various levels of injury and fatality.
Technical Paper

Sensitivity of Porcine Thoracic Responses and Injuries to Various Frontal and A Lateral Impact Site

1978-02-01
780890
Classical blunt thoracic impacts have involved midsternal anteroposterior loadings to an upright-positioned subject. Data on the sensitivity of human cadaver and/or animal model biomechanical and injury responses to blunt loadings at different sternal locations is needed to evaluate the efficacy of current injury-potential guidelines for nonsite-specific frontal impacts. In addition, the biomechanics and injury mechanisms associated with lateral impacts constitute a subject of increasing consideration for occupant protection. Twelve anesthetized pigs were subjected to various blunt frontal or a right-side impact to assess biomechanical and injury response differences in a living animal model.
Technical Paper

Proportional Braking of Solid-Frame Vehicles

1971-02-01
710047
An engineering analysis of vehicle braking is presented in terms of the utilization of available road friction. Physical relations are derived which allow the determination of optimum brake force distribution on front and rear wheels as a function of axle loading. Ideal braking distribution curves are shown for a typical vehicle in the loaded and unloaded conditions. A technique is suggested for rational design of braking system parameters. It is applied to the case of a two-stage proportioning system, and is validated by experimental data from tests using a specially equipped light truck. It is concluded that a proper design analysis can establish a combination of braking system parameters which results in improved utilization of available friction. A simple, self-adjusting brake proportioning system can be a highly cost-effective safety device for truck use.
Technical Paper

Occupant Protection in Rear-end Collisions: I. Safety Priorities and Seat Belt Effectiveness

1991-10-01
912913
Recent detailed field accident data are examined with regard to injuries associated with rear impacts. The distribution of “Societal Harm” associated with various injury mechanisms is presented, and used to evaluate the performance of current seat back and restraint system designs. Deformation associated with seat back yield is shown to be beneficial in reducing overall Societal Harm in rear impacts. The Societal Harm associated with ejection and contact with the vehicle rear interior (the two injury mechanisms addressed by a rigid seat approach), is shown to be minimal. The field accident data also confirm that restraint usage in rear impacts has a substantial injury-reducing effect. Laboratory tests and computer simulations were run to investigate the mechanism by which seat belts protect occupants in rear impacts.
Technical Paper

Injury and Intrusion in Side Impacts and Rollovers

1984-02-01
840403
The relationship between occupant crash injury and occupant compartment intrusion is seen in the perspectives of the velocity-time analysis and the NCSS statistical data for two important accident injury modes, lateral and rollover collisions. Restraint system use, interior impacts, and vehicle design features are considered. Side impact intrusion is analyzed from physical principles and further demonstrated by reference to staged collisions and NCSS data. Recent publications regarding findings of the NCSS data for rollovers, as well as the NCSS data itself, are reviewed as a background for kinematic findings regarding occupant injury in rollovers with roof crush.
X