Refine Your Search

Topic

Search Results

Standard

Standard Rainflow File Format

2018-08-24
CURRENT
J2623_201808
This SAE Standard provides a definition of a rainflow file format. This type of simple text file would contain all relevant information about the rainflow cycle content of a time history. Included information are Comments, Signal Range, Signal Mean, Number of Cycles, Signal Maximum, Signal Minimum. Rainflow cycle counting has become the most accepted procedure for identifying material fatigue relevant cycles in complex variable amplitude load time histories. The cycle counting methods account for the effects of material plasticity and material memory of prior deformation, and the resulting compressed history information is used by durability analysts to estimate the effects of a given service or test history.
Standard

Standard Rainflow File Format

2002-04-30
HISTORICAL
J2623_200204
This SAE Standard provides a definition of a rainflow file format. This type of simple text file would contain all relevant information about the rainflow cycle content of a time history. Included information are Comments, Signal Range, Signal Mean, Number of Cycles, Signal Maximum, Signal Minimum. Rainflow cycle counting has become the most accepted procedure for identifying material fatigue relevant cycles in complex variable amplitude load time histories. The cycle counting methods account for the effects of material plasticity and material memory of prior deformation, and the resulting compressed history information is used by durability analysts to estimate the effects of a given service or test history.
Standard

PNEUMATIC SPRING TERMINOLOGY

1989-06-01
HISTORICAL
J511_198906
This pneumatic spring terminology has been developed to assist engineers and designers in the preparation of specifications and descriptive material relating to pneumatic springs and their components. It does not include gas supply or control systems.
Standard

Pneumatic Spring Terminology

2016-04-01
CURRENT
J511_201604
This pneumatic spring terminology has been developed to assist engineers and designers in the preparation of specifications and descriptive material relating to pneumatic springs and their components. It does not include gas supply or control systems.
Standard

Recommended Guidelines for Load/Deformation Testing of Elastomeric Components

2017-01-05
CURRENT
J1636_201701
The purpose of this SAE Recommended Practice is to review factors that influence the behavior of elastomeric components under conditions of loading or deforming at a constant rate and to provide guidance concerning test procedures used to define or specify the load/deformation characteristics of elastomeric components. This characteristic is referred to as Static Stiffness. This is also referred to as a "Static Deflection Test."
Standard

RECOMMENDED GUIDELINES FOR LOAD/DEFORMATION TESTING OF ELASTOMERIC COMPONENTS

1993-02-01
HISTORICAL
J1636_199302
The purpose of this SAE Recommended Practice is to review factors that influence the behavior of elastomeric components under conditions of loading or deforming at a constant rate and to provide guidance concerning test procedures used to define or specify the load/deformation characteristics of elastomeric components. This characteristic is referred to as Static Stiffness. This is also referred to as a "Static Deflection Test."
Standard

LEAF SPRINGS FOR MOTOR VEHICLE SUSPENSION—MADE TO METRIC UNITS

1992-11-01
HISTORICAL
J1123_199211
NOTE—For leaf springs made to customary U.S. units, see SAE J510. This SAE Standard is limited to concise specifications promoting an adequate understanding between spring maker and spring user on all practical requirements in the finished spring. The basic concepts for the spring design and for many of the details have been fully dealt with in HS-J788.
Standard

Leaf Springs For Motor Vehicle Suspension - Made to Metric Units

2016-04-05
CURRENT
J1123_201604
NOTE—For leaf springs made to customary U.S. units, see SAE J510. This SAE Standard is limited to concise specifications promoting an adequate understanding between spring maker and spring user on all practical requirements in the finished spring. The basic concepts for the spring design and for many of the details have been fully dealt with in HS-J788.
Standard

Testing Dynamic Properties of Elastomeric Isolators

1999-05-01
HISTORICAL
J1085_199905
These methods cover testing procedures for defining and specifying the dynamic characteristics of simple elastomers and simple fabricated elastomeric isolators used in vehicle components. Simple, here, is defined as solid (non-hydraulic) components tested at frequencies less than or equal to 25 Hz.
Standard

Testing Dynamic Properties of Elastomeric Isolators

2017-02-09
CURRENT
J1085_201702
These methods cover testing procedures for defining and specifying the dynamic characteristics of simple elastomers and simple fabricated elastomeric isolators used in vehicle components. Simple, here, is defined as solid (non-hydraulic) components tested at frequencies less than or equal to 25 Hz.
Standard

GUIDELINES FOR LABORATORY CYCLIC CORROSION TEST PROCEDURES FOR PAINTED AUTOMOTIVE PARTS

1993-10-13
HISTORICAL
J1563_199310
These guidelines are intended for those engineers and scientists who evaluate the corrosion performance of painted automotive parts in laboratory cyclic tests. The guidelines are intended to help ensure that the results of the tests can be used to reach conclusions concerning the variables under study without being confounded by the test procedure itself. The guidelines also serve as a means to assist users of this type of test in obtaining good inter-laboratory agreement of results.
Standard

Guidelines for Laboratory Cyclic Corrosion Test Procedures for Painted Automotive Parts

2016-04-05
CURRENT
J1563_201604
These guidelines are intended for those engineers and scientists who evaluate the corrosion performance of painted automotive parts in laboratory cyclic tests. The guidelines are intended to help ensure that the results of the tests can be used to reach conclusions concerning the variables under study without being confounded by the test procedure itself. The guidelines also serve as a means to assist users of this type of test in obtaining good inter-laboratory agreement of results.
Standard

ELECTRIC HOURMETER SPECIFICATION

1983-03-01
HISTORICAL
J1378_198303
This SAE Recommended Practice establishes minimum requirements for electric hourmeters for general vehicular applications.
Standard

Strain-Life Fatigue Data File Format

2018-08-24
CURRENT
J2409_201808
SAE format for a SIMPLE Strain-Life Fatigue Data Exchange File Format. The object of this SAE Standard is to provide a simple common way to exchange strain-life fatigue data collected from ASTM E 606 axial fatigue test data.
Standard

Strain-Life Fatigue Data File Format

2004-11-04
HISTORICAL
J2409_200411
SAE format for a SIMPLE Strain-Life Fatigue Data Exchange File Format. The object of this SAE Standard is to provide a simple common way to exchange strain-life fatigue data collected from ASTM E 606 axial fatigue test data.
Standard

Multi-Dimensional Thermal Properties of Insulated Heat Shield Material Systems

2003-12-03
HISTORICAL
J2609_200312
This test method measures the system material properties of an insulated formed heat shield under in-vehicle conditions. While the material properties of the individual components can often be determined via existing test methods, the system properties of the entire composite is typically much harder to ascertain (especially for multi-layer shields). System material properties include thermal conductivity in the lateral or in-plane (x) direction, thermal conductivity through the thickness or perpendicular (y), surface emissivity on the top and bottom sides of the shield and specific heat of the shield material.
Standard

Multi-Dimensional Thermal Properties of Insulated Heat Shield Material Systems

2018-08-24
CURRENT
J2609_201808
This test method measures the system material properties of an insulated formed heat shield under in-vehicle conditions. While the material properties of the individual components can often be determined via existing test methods, the system properties of the entire composite is typically much harder to ascertain (especially for multi-layer shields). System material properties include thermal conductivity in the lateral or in-plane (x) direction, thermal conductivity through the thickness or perpendicular (y), surface emissivity on the top and bottom sides of the shield and specific heat of the shield material.
Standard

Helical Springs: Specification Check Lists

2004-10-11
HISTORICAL
J1122_200410
The following SAE Recommended Practice furnishes sample forms for helical compression, extension and torsion springs to provide a uniform method for specifying design information. It is not necessary to fill in all the data, but sufficient information must be supplied to fully describe the part and to satisfy the requirements of its application. For detailed information, see “Design and Application of Helical and Spiral Springs - SAE HS 795”, also “Helical Compression and Extension Spring Terminology - SAE J1121”. Both of these documents use SI (metric) Units in accordance with the provisions of SAE TSB 003, as does SAE J1122. Here, however, the U.S. Customary Units (in, lb, psi) have been added in parentheses after each SI Unit for the convenience of the user who must furnish specifications on a project where all requirements are listed in non-metric terms.
Standard

Helical Springs: Specification Check Lists

2016-08-02
CURRENT
J1122_201608
The following SAE Recommended Practice furnishes sample forms for helical compression, extension and torsion springs to provide a uniform method for specifying design information. It is not necessary to fill in all the data, but sufficient information must be supplied to fully describe the part and to satisfy the requirements of its application. For detailed information, see “Design and Application of Helical and Spiral Springs - SAE HS 795”, also “Helical Compression and Extension Spring Terminology - SAE J1121”. Both of these documents use SI (metric) Units in accordance with the provisions of SAE TSB 003, as does SAE J1122. Here, however, the U.S. Customary Units (in, lb, psi) have been added in parentheses after each SI Unit for the convenience of the user who must furnish specifications on a project where all requirements are listed in non-metric terms.
Standard

Leaf Springs for Motor Vehicle Suspension - Made to Customary U.S. Units

2016-04-05
CURRENT
J510_201604
NOTE—For leaf springs made to metric units, see SAE J1123. This SAE Standard is limited to concise specifications promoting an adequate understanding between spring maker and spring user on all practical requirements in the finished spring. The basic concepts for the spring design and for many of the details have been fully addressed in HS-J788, SAE Information Report, Manual on Design and Application of Leaf Springs, which is available from SAE Headquarters.
X