Refine Your Search

Topic

Search Results

Standard

Procedure for Measuring Bore and Face Runout of Flywheels, Flywheel Housings, and Flywheel Housing Adapters

2012-06-01
CURRENT
J1033_201206
This SAE Recommended Practice applies to any internal combustion engine which can utilize SAE No. 6 thru SAE No. 00 size flywheel housing. It provides instructions for correcting flywheel housing bore runout readings which are influenced by crankshaft bearing clearance. Limits for bore and face runout are specified in the various SAE Standards and Recommended Practices covering flywheels and flywheel housings.
Standard

OVERCENTER CLUTCH SPIN TEST PROCEDURE

1988-09-01
HISTORICAL
J1079_198809
This recommended practice applies to driving ring type overcenter clutches such as are used in industrial power takeoffs.
Standard

OVERCENTER CLUTCH SPIN TEST PROCEDURE

1995-03-28
HISTORICAL
J1079_199503
This SAE Recommended Practice applies to driving ring type overcenter clutches such as are used in industrial power takeoffs.
Standard

Overcenter Clutch Spin Test Procedure

2012-10-23
CURRENT
J1079_201210
This SAE Recommended Practice applies to driving ring type overcenter clutches such as are used in industrial power takeoffs.
Standard

EMISSION TEST DRIVING SCHEDULES

1991-06-01
HISTORICAL
J1506_199106
This SAE Information Report describes various dynamometer driving schedules currently in use in the world for measurement of exhaust emissions and fuel economy of passenger cars and light trucks. Issuance of this document will allow driving schedules to be deleted from individual test procedures, thus reducing the amount of repeated information in the SAE Handbook. This document includes: a. Descriptions of driving schedules; and b. Second-by second definition of speed versus time sequences.
Standard

EMISSION TEST DRIVING SCHEDULES

1988-06-01
HISTORICAL
J1506_198806
This SAE Information Report describes various dynamometer driving schedules currently in use in the world for measurement of exhaust emissions and fuel economy of passenger cars and light trucks. Issuance of this information report will allow driving schedules to be deleted from individual test procedures, thus reducing the amount of repeated information in the SAE Handbook. This information report includes: 1 - Descriptions of driving schedules. 2 - Second-by second definition of speed versus time sequences.
Standard

ENGINE FLYWHEEL HOUSINGS WITH SEALED FLANGES

1993-05-01
HISTORICAL
J1172_199305
This SAE Recommended Practice defines flywheel housing flange configurations for applications requiring "O" ring sealing of the flange pilot bore. Table 1 and Figure 1 show dimensions that are different from those in SAE J617. All other dimensions and tolerances of SAE J617 apply.
Standard

Engine Flywheel Housings with Sealed Flanges

2012-10-23
CURRENT
J1172_201210
This SAE Recommended Practice defines flywheel housing flange configurations for applications requiring "O" ring sealing of the flange pilot bore. Table 1 and Figure 1 show dimensions that are different from those in SAE J617. All other dimensions and tolerances of SAE J617 apply.
Standard

Continuously Variable Transmission Test Code For Passenger Cars

2011-09-06
CURRENT
J1618_201109
To measure the performance characteristics of Continuously Variable Transmissions (CVT). It outlines dynamometer tests that cover the range of operation and provides a method of presenting the test data. This procedure must be followed with similar test facilities so that results obtained from different laboratories are comparable.
Standard

Continuously Variable Transmission Test Code For Passenger Cars

2000-04-12
HISTORICAL
J1618_200004
To measure the performance characteristics of Continuously Variable Transmissions (CVT). It outlines dynamometer tests that cover the range of operation and provides a method of presenting the test data. This procedure must be followed with similar test facilities so that results obtained from different laboratories are comparable.
Standard

ENGINE WEIGHT, DIMENSIONS, CENTER OF GRAVITY, AND MOMENT OF INERTIA

1992-04-01
HISTORICAL
J2038_199204
This SAE Recommended Practice has been developed to provide a uniform method for reporting the weight, dimensions, center of gravity, and moment of inertia of internal combustion engines. SAE J2038 is not intended to cover the technical interface between the engine and transmission. To locate the rear of the engine crankshaft in relationship to the rear of the flywheel housing, refer to SAE J617.
Standard

ENGINE WEIGHT AND DIMENSIONS

1990-04-01
HISTORICAL
J2038_199004
This SAE Recommended Practice has been developed to provide a uniform method for reporting the weight and dimensions of internal combustion engines. SAE J2038 is not intended to cover the technical interface between the engine and transmission. To locate the rear of the engine crankshaft in relationship to the rear of the flywheel housing, refer to SAE J617.
Standard

FLYWHEELS FOR SINGLE BEARING ENGINE MOUNTED POWER GENERATORS

1976-08-01
HISTORICAL
J162A_197608
This recommended practice incorporates recommended dimensions for flywheels for use with single bearing power generators in the range of 10-500kW, operating at speeds of 1000-1800 rpm. Driving torque, fastener strength, and rotative speeds shall be consistent with good design practice.
Standard

DIESEL SMOKE MEASUREMENT PROCEDURE

1988-09-01
HISTORICAL
J35_198809
The recommended practice applies to the dynamometer test procedure which can be used to assess the smoke emission characteristics of vehicular diesel engines. In particular, this procedure describes the smoke test cycle, equipment and instrumentation, instrument checks, chart reading and calculation for evaluation of an engine’s transient smoke emission characteristic. In addition, this procedure offers guidelines to be used in establishing correlation between full flow in-line and end-of-line opacimeters. Since the type of test described here is transient in nature, a fast responding full flow opacimeter is required for the smoke measurements. Slow responding or sampling, or both, type instruments must not be used since they typically have excessive and variable response delays and do not provide an accurate measurement of an engine’s transient smoke characteristics.
Standard

Diesel Smoke Measurement Procedure

1995-03-01
HISTORICAL
J35_199503
This SAE Recommended Practice applies to the dynamometer test procedure which can be used to assess the smoke emission characteristics of vehicular diesel engines. In particular, this procedure describes the smoke test cycle, equipment and instrumentation, instrument checks, chart reading, and calculation for evaluation of an engine's transient smoke emission characteristic. In addition, this procedure offers guidelines to be used in establishing correlation between full flow in-line and end-of-line opacimeters. Since the type of test described here is transient in nature, a fast responding full flow opacimeter is required for the smoke measurements. Slow responding or sampling, or both, type instruments must not be used since they typically have excessive and variable response delays and do not provide an accurate measurement of an engine's transient smoke characteristics.
Standard

Housing Internal Dimensions for Single- and Two-Plate Spring-Loaded Clutches

2012-05-31
CURRENT
J373_201205
This SAE Recommended Practice defines the minimum internal dimensions for clutch housings to provide adequate clearance for single- and two-plate spring-loaded clutches. (See Figure 1.) Consult SAE J617 for housing flange dimensions. Consult SAE J618 and J619 for spring-loaded clutch flywheel dimensions F and G and other dimensional data. Table 1 provides housing minimum internal dimensions for single- and two-plate spring-loaded clutches.
Standard

HOUSING INTERNAL DIMENSIONS FOR SINGLE AND TWO PLATE SPRING LOADED CLUTCHES

1987-08-01
HISTORICAL
J373_198708
This SAE Recommended Practice defines the minimum internal dimensions for clutch housings to provide adequate clearance for single and two plate spring loaded clutches. Consult SAE J617c (June, 1976) for housing flange dimensions. Consult SAE J618 JUN80 and J619 JUN80 for spring loaded clutch flywheel dimensions F and G and other dimensional data. Table 1 provides housing minimum internal dimensions for single and two flange spring loaded clutches.
Standard

HOUSING INTERNAL DIMENSIONS FOR SINGLE- AND TWO-PLATE SPRING-LOADED CLUTCHES

1993-04-27
HISTORICAL
J373_199304
This SAE Recommended Practice defines the minimum internal dimensions for clutch housings to provide adequate clearance for single- and two-plate spring-loaded clutches. (See Figure 1.) Consult SAE J617 for housing flange dimensions. Consult SAE J618 and J619 for spring-loaded clutch flywheel dimensions F and G and other dimensional data. Table 1 provides housing minimum internal dimensions for single- and two-plate spring-loaded clutches.
Standard

HOUSING INTERNAL DIMENSIONS FOR SINGLE AND TWO PLATE SPRING LOADED CLUTCHES

1978-09-01
HISTORICAL
J373A_197809
This SAE Recommended Practice defines the minimum internal dimensions for clutch housings to provide adequate clearance for single and two plate spring loaded clutches. Consult SAE J617c (June, 1976) for housing flange dimensions. Consult SAE J618d (May, 1974) and J619d (May, 1974) for spring loaded clutch flywheel dimensions E and G and other dimensional data. Table 1 provides housing minimum internal dimensions for single and two flange spring loaded clutches.
Standard

Manual Transmission and Transaxle Efficiency and Parasitic Loss Measurement

1999-08-30
HISTORICAL
J2453_199908
Because of the intense focus on CAFE and fuel emission standards, optimization of the automobile drivetrain is imperative. In light of this, component efficiencies have become an important factor in the drivetrain decision-making process. It has therefore become necessary to develop a universal standard to judge transmission efficiency. This SAE Recommended Practice specifies the dynamometer test procedure which maps a manual transmission’s efficiency. The document is separated into two parts. The first compares input and output torque throughout a specified input speed range in order to determine “in-gear” transmission efficiency. The second procedure measures parasitic losses experienced while in neutral at nominal idling speeds and also churning losses while in gear. The application of this document is intended for passenger car and light truck. All references to transmissions throughout this document include transaxles.
X