Refine Your Search

Search Results

Viewing 1 to 3 of 3
Technical Paper

Flame Shape Determination Using an Optical-Fiber Spark Plug and a Head-Gasket Ionization Probe

1994-10-01
941987
A method for determining the flame contour based on the flame arrival time at the fiber optic (FO) spark plug and at the head gasket ionization probe (IP) locations has been developed. The experimental data were generated in a single-cylinder Ricardo Hydra spark-ignition engine. The head gasket IP, constructed from a double-sided copper-clad circuit board, detects the flame arrival time at eight equally spaced locations at the top of the cylinder liner. Three other IP's were also installed in the cylinder head to provide additional intermediate data on flame location and arrival time. The FO spark plug consists of a standard spark plug with eight symmetrically spaced optical fibers located in the ground casing of the plug. The cylinder pressure was recorded simultaneously with the eleven IP signals and the eight optical signals using a high-speed PC-based data acquisition system.
Technical Paper

Schlieren Visualization of the Flow and Density Fields in the Cylinder of a Spark-Ignition Engine

1980-02-01
800044
The design and operating characteristics of a single-cylinder transparent spark-ignition engine for Schlieren flow visualization are described. The engine is built on a CFR engine crankcase using the CFR piston and cylinder as a crosshead for the square cross-section piston and cylinder assembly. The square cross-section assembly has two parallel steel walls and two parallel quartz glass walls to permit optical access to the entire cylinder volume over the complete engine operating cycle. The CFR head and valve mechanism completes the assembly. It is shown that the engine operates satisfactorily with propane fuel under typical engine operating conditions. Schlieren short time-exposure photographs and high speed movies were taken to define details of the flow and density fields through the engine cycle. Photographs which illustrate key features of these fields are presented and described.
Technical Paper

Flow in the Piston-Cylinder-Ring Crevices of a Spark-Ignition Engine: Effect on Hydrocarbon Emissions, Efficiency and Power

1982-02-01
820088
The flow into and out of the piston top-land crevice of a spark-ignition engine has been studied, using a square-cross-section single-cylinder engine with two parallel quartz glass walls which permit optical access to the entire cylinder volume. Schlieren short-time exposure photographs and high speed movies were used to define the essential features of this flow. The top-land crevice and the regions behind and between the rings consist of volumes connected through the ring gaps. A system model of volumes and orifices was therefore developed and used to predict the flow into and out of the crevice regions between the piston, piston rings and cylinder wall.
X