Refine Your Search

Search Results

Viewing 1 to 4 of 4
Technical Paper

Evaluation of Anti-Whiplash Seat Robustness for Multi-Peak Crash Pulses in Low-Speed Rear-End Crashes

2009-04-20
2009-01-1202
The mechanism of whiplash is not well understood and thus preventing a certain motion or force in an occupant might not mitigate this injury. However, a number of injury criteria have been proposed to evaluate the neck injury risk in a rear-end crash. In the safety design of the seat and the headrest assembly, robustness or invariability of whiplash protection must be secured not only under the assessment pulses applied in sled tests but also under such pulses that show random multiple peaks in real-world car-to-car rear-end crashes. The aim of this study is to investigate a method of evaluating the invariability of whiplash protection performance in low-speed rear-end crashes, not with multiple injury criteria but with a single newly proposed objective function. The function was determined based on the hypothesis that the ideal seat is rigid in terms of such invariability.
Technical Paper

Development and Validation of a Finite Element Model of a Vehicle Occupant

2004-03-08
2004-01-0325
A finite element human model has been developed to simulate occupant behavior and to estimate injuries in real-world car crashes. The model represents an average adult male of the US population in a driving posture. Physical geometry, mechanical characteristics and joint structures were replicated as precise as possible. The total number of nodes and materials is around 67,000 and 1,000 respectively. Each part of the model was not only validated against human test data in the literature but also for realistic loading conditions. Additional tests were newly conducted to reproduce realistic loading to human subjects. A data set obtained in human volunteer tests was used for validating the neck part. The head-neck kinematics and responses in low-speed rear impacts were compared between the measured and calculated results. The validity of the lower extremity part was examined by comparing the tibia force in a foot impact between the test data and simulation results.
Technical Paper

Effect of Impact-Triggered Automatic Braking in Multiple Impact Crashes

2012-04-16
2012-01-1181
This study proposes an impact-triggered automatic braking system as a potential safety improvement based on the characteristics of the Multiple Impact Crashes (MICs). The system activates with a signal of airbag deployment in a collision to reduce the vehicle speed in the subsequent collisions. The effectiveness was estimated by an in-depth review of the National Automotive Sampling System-Crashworthiness Data System (NASS-CDS). The cases were extracted on the basis of the 3-point lap and shoulder belted occupants, incurring Maximum Abbreviated Injury Scale level 3 to 6 injuries (MAIS 3+), in the crashes occurred from 2004 to 2006, without vehicle rollover or occupant ejection, where the involved vehicles were 2000 and newer model year cars and light trucks.
Technical Paper

Finite Element Analysis of Hard and Soft Tissue Contributions to Thoracic Response: Sensitivity Analysis of Fluctuations in Boundary Conditions

2006-11-06
2006-22-0008
Thoracic trauma is the principle causative factor in 30% of road traffic deaths. Researchers have developed force-deflection corridors of the thorax for various loading conditions in order to elucidate injury mechanisms and to validate the mechanical response of ATDs and numerical human models. A corridor, rather than a single response characteristic, results from the variability inherent in biological experimentation. This response variability is caused by both intrinsic and extrinsic factors. The intrinsic factors are associated with individual differences among human subjects, e.g., the differences in material properties and in body geometry. The extrinsic sources of variability include fluctuations in the loading and supporting conditions in experimental tests.
X