Refine Your Search

Topic

Search Results

Journal Article

Determination of the Pressure Distribution Beneath Two- and Three-Inch Wide Racing Safety Belts

2008-12-02
2008-01-2977
This study examines the static pressure distribution under both width belts in the shoulder and the pelvis of 15 volunteer subjects. The subjects applied the belt loads to themselves through a lever and pulley system. The configuration of the belts simulated the typical arrangement of a six-point belted upright-seated racing driver. The pressure distribution between the belt and the volunteer's body was determined and recorded with Tek-Scan pressure sensing grids. The paper presents the results of the measurements by comparing the actual area of significant loading beneath the two widths and materials of both lap and shoulder belts. In, general, there no significant increase in loaded area for the wider belts.
Technical Paper

Biomechanical Analysis of Indy Race Car Crashes

1998-11-02
983161
This paper describes the results of an ongoing project in the GM Motorsports Safety Technology Research Program to investigate Indianapolis-type (Indy car) race car crashes using an on-board impact recorder as the primary data collection tool. The paper discusses the development of specifications for the impact-recording device, the selection of the specific recorder and its implementation on a routine basis in Indy car racing. The results from incidents that produced significant data (crashes with peak decelerations above 20 G) during the racing seasons from 1993 through the first half of 1998 are summarized. The focus on Indy car crashes has proven to provide an almost laboratory-like setting due to the similarity of the cars and to the relative simplicity of the crashes (predominantly planar crashes involving single car impacts against well-defined impact surfaces).
Technical Paper

Head-Neck Kinematics in Dynamic Forward Flexion

1998-11-02
983156
Two-dimensional film analysis was conducted to study the kinematics of the head and neck of 17 restrained human volunteers in 24 frontal impacts for acceleration levels from 6g to 15g. The trajectory of the head center of gravity relative to upper torso reference points and the rotation of head and neck relative to the lower torso during the forward motion phase were of particular interest. The purpose of the study was to analyze the head-neck kinematics in the mid-sagittal plane for a variety of human volunteer frontal sled tests from different laboratories using a common analysis method for all tests, and to define a common response corridor for the trajectory of the head center-of-gravity from those tests.
Technical Paper

Sled Test Evaluation of Racecar Head/Neck Restraints

2002-12-02
2002-01-3304
Recent action by some racecar sanctioning bodies making head/neck restraint use mandatory for competitors has resulted in a number of methods attempting to provide head/neck restraint. This paper evaluates the performance of a number of commercially available head/neck restraint systems using a stock car seating configuration and a realistic stock car crash pulse. The tests were conducted at an impact angle of 30 degrees to the right, with a midsize male Hybrid III anthropomorphic test device (ATD) modified for racecar crash testing. A six-point latch and link racing harness restrained the ATD. The goal of the tests was to examine the performance of the head/neck restraint without the influence of the seat or steering wheel. Three head/neck restraint systems were tested using a sled pulse with a 35 mph (56 km/h) velocity change and 50G peak deceleration. Three tests with three samples of each system were performed to assess repeatability.
Technical Paper

A Shoulder Belt Load Cell for Racing Cars

2011-04-12
2011-01-1102
This paper presents the rationale behind the development of a shoulder belt load cell suitable for application in racings cars. The design of the load cell and the operational parameters necessary for a research-quality measurement device for biomechanics research in racing car crashes and the performance of the device in sled tests are described.
Technical Paper

Assessment of Air Bag Deployment Loads with the Small Female Hybrid III Dummy

1993-11-01
933119
This study is an extension of previous work on driver air bag deployment loads which used the mid-size male Hybrid Ill dummy. Both small female and mid-size male Hybrid Ill dummies were tested with a range of near-positions relative to the air bag module. These alignments ranged from the head centered on the module to the chest centered on the module and with various separations and lateral shifts from the module. For both sized dummies the severity of the loading from the air bag depended on alignment and separation of the dummy with respect to the air bag module. No single alignment provided high responses for all body regions, indicating that one test at a typical alignment cannot simultaneously determine the potential for injury risk for the head, neck, and torso. Based on comparisons with their respective injury assessment reference values, the risk of chest injury appeared similar for both sized dummies.
Technical Paper

Brain Injury Prediction for Indy Race Car Drivers Using Finite Element Model of the Human Head

2004-11-30
2004-01-3539
The objective of this work was to evaluate a new tool for assessing brain injury. Many race car drivers have suffered concussion and other brain injuries and are in need of ways of evaluating better head protective systems and equipment. Current assessment guidelines such as HIC may not be adequate for assessing all scenarios. Finite element models of the brain have the potential to provide much better injury prediction for any scenario. At a previous Motorsports conference, results of a MADYMO model of a racing car and driver driven by 3-D accelerations recorded in actual crashes were presented. Model results from nine cases, some with concussion and some not, yielded head accelerations that were used to drive the Wayne State University Head Injury Model (WSUHIM). This model consists of over 310,000 elements and is capable of simulating direct and indirect impacts. It has been extensively validated using published cadaveric test data.
Technical Paper

Sled Test Evaluation of Racecar Head/Neck Restraints Revisited

2004-11-30
2004-01-3516
At the 2002 MSEC, we presented a paper on the sled test evaluation of racecar head/neck restraint performance (Melvin, et al. 2002). Some individuals objected to the 3 msec clip filtering procedures used to eliminate artifactual spikes in the neck tension data for the HANS® device. As a result, we are presenting the same test data with the spikes left in the neck force data to reassure those individuals that these spikes did not significantly affect the results and conclusions of our original paper. In addition we will add new insights into understanding head/neck restraint performance gained during two more years of testing such systems. This paper re-evaluates the performance of three commercially available head/neck restraint systems using a stock car seating configuration and a realistic stock car crash pulse. The tests were conducted at an impact angle of 30 degrees to the right, with a midsize male Hybrid III anthropomorphic test device (ATD) modified for racecar crash testing.
Technical Paper

Improved Neck Simulation for Anthropometric Dummies

1972-02-01
720958
This paper describes the development of an improved neck simulation that can be adapted to current anthropometric dummies. The primary goal of the neck design is to provide a reasonable simulation of human motion during impact while maintaining a simple, rugged structure. A synthesis of the current literature on cervical spine mechanics was incorporated with the results of x-ray studies of cervical spine mobility in human volunteers and with the analysis of head-neck motions in human volunteer sled tests to provide a background for the design and evaluation of neck models. Development tests on neck simulations were carried out using a small impact sled. Tests on the final prototype simulation were also performed with a dummy on a large impact sled. Both accelerometers and high-speed movies were used for performance evaluation.
Technical Paper

Injury Patterns by Restraint Usage in 1973 and 1974 Passenger Cars

1975-02-01
751143
Data on towaway accidents involving 1973- and 1974-model American passenger cars were collected according to a systematic sampling plan in order to measure 1974 restraint system performance. The data on 5,138 drivers and right front passengers were collected by three organizations: Calspan Corporation, Highway Safety Research Institute, and Southwest Research Institute. Analysis of the data showed that the 1974 ignition interlock system increased full restraint system usage by a factor of 10 over 1973 cars. The 1974 full restraint system (lap and upper-torso belts) also demonstrated a greater reduction in severe injuries (AIS≥2) than the 1973 lap-belt-only system. Paradoxically, little reduction in 1974-model severe injuries was found when the two model years were compared, although no attempt was made to control for confounding factors in the accident cases.
Technical Paper

Occupant Injury Assessment Criteria

1975-02-01
750914
This paper is a brief review of the complex subject of human injury mechanisms and impact tolerance. Automotive accident-related injury patterns are briefly described and the status of knowledge in the biomechanics of trauma of the head, neck, chest, abdomen and extremities is discussed.
Technical Paper

Impact Response and Tolerance of the Lower Extremities

1975-02-01
751159
This paper presents the results of direct impact tests and driving point impedance tests on the legs of seated unembalmed human cadavers. Variables studied in the program included impactor energy and impact direction (axial and oblique). Multiple strain gage rosettes were applied to the bone to determine the strain distribution in the bone. The test results indicate that the unembalmed skeletal system of the lower extremities is capable of carrying significantly greater loads than those determined in tests with embalmed subjects (the only similar data reported in the present literature). The strain analysis indicated that significant bending moments are generated in the femur with axial knee impact. The results of the impedance tests are used to characterize the load transmission behavior of the knee-femur-pelvis complex, and the impact test results are combined with this information to produce suggested response characteristics for dummy simulation of knee impact response.
Technical Paper

Head Impact Response Comparisons of Human Surrogates

1979-02-01
791020
The response of the head to impact in the posterior-to-anterior direction was investigated with live anesthetized and post-mortem primates.* The purpose of the project was to relate animal test results to previous head impact tests conducted with cadavers (reported at the 21st Stapp Car Crash Conference (1),** and to study the differences between the living and post-mortem state in terms of mechanical response. The three-dimensional motion of the head, during and after impact, was derived from experimental measurements and expressed as kinematic quantities in various reference frames. Comparison of kinematic quantities between subjects is normally done by referring the results to a standard anatomical reference frame, or to a predefined laboratory reference frame. This paper uses an additional method for describing the kinematics of head motion through the use of Frenet-Serret frame fields.
Technical Paper

Human Head and Knee Tolerance to Localized Impacts

1969-02-01
690477
The results of recent dynamic load measurements on human skull and patella bone, conducted with less-than-1-sq-in. penetrators, are discussed in relation to previously reported skull impact data from larger contact areas. These medical data are compared to the dynamic response of a large variety of natural and synthetic plastic materials, for use in trauma-indicating headform and kneeform design. Several bodyform designs are proposed as research tools.
Technical Paper

Impact Response and Injury of the Pelvis

1982-02-01
821160
Multiple axial knee impacts and/or a single lateral pelvis impact were performed on a total of 19 cadavers. The impacting surface was padded with various materials to produce different force-time and load distribution characteristics. Impact load and skeletal acceleration data are presented as functions of both time and frequency in the form of mechanical impedance. Injury descriptions based on gross autopsy are given. The kinematic response of the pelvis during and after impact is presented to indicate the similarities and differences in response of the pelvis for various load levels. While the impact response data cannot prescribe a specific tolerance level for the pelvis, they do indicate variables which must be considered and some potential problems in developing an accurate injury criterion.
Technical Paper

Review of Research on Thoracic Impact Tolerance and Injury Criteria Related to Occupant Protection

1982-02-01
820480
The technical and scientific literature dealing with thoracic injury, to or within the rib cage, from blunt loading is reviewed. The history of the development of associated Federal Motor Vehicle Safety Standards is reviewed from the aspect of its relationship to the history of development of the research information. Field case data from car-to-car and car-to-tree/pole crashes has been examined and summarized. This study suggests that the laboratory research has not adequately covered the principal variables found to exist in actual injury cases. Specifically, more research attention should be given to the shape of the impactor, to the loading location and direction, and to injuries in the contusion and/or laceration family. Correspondingly, the accident investigation process needs to be more sensitive to occupant/vehicle-interior interaction variables so that laboratory research can be properly guided.
Technical Paper

The Influence of Impact Energy and Direction on Thoracic Response

1983-10-17
831606
A test series using unembalmed cadavers was conducted to investigate thoracic response differences in lateral impacts between high energy (rib fractures produced) and low energy (no rib fractures produced) testing and also the response to low energy impacts for different impact directions (frontal, 45°, and lateral). Five of the test subjects were instrumented with a nine-accelerometer package and an eighteen-accelerometer array to measure thoracic response. Seven of the test subjects were instrumented with a triaxial accelerometer on the head and a six-accelerometer array to measure thoracic response. Impact events were performed with either the UMTRI pendulum impact device or the UMTRI pneumatic impact device. The subject was struck with a free-traveling mass (25 or 56 kg) which was fitted with either a 15 cm round or 20 cm square rigid metal surface.
Technical Paper

A High-Speed Cineradiographic Technique for Biomechanical Impact

1976-02-01
760824
A versatile high-speed cineradiographic system developed in the Biomechanics Department of The University of Michigan's Highway Safety Research Institute has recently been completed, for application to human injury and tolerance and occupant protection research. This system consists of a high-speed motion picture camera which views a 2-inch diameter output phosphor of a high gain 4-stage, magnetically focussed image intensifier tube, gated on and off synchronously with shutter pulses from the motion picture camera. A fast lens optically couples the input photocathode of the image intensifier tube to x-ray images produced on a fluorescent screen by a d-c x-ray generator.
Technical Paper

Head and Neck Response to Axial Impacts

1984-10-01
841667
Two series of impacts to the head in the superior-inferior direction using 19 unembalmed cadavers are reported. The first series of five tests was aimed at generating kinematic and dynamic response to sub-injurious impacts for the purpose of defining the mechanical characteristics of the undamaged head-neck-spine system in the S-I direction. The second series of fourteen tests was intended to define injury tolerance levels for a selected subject configuration. A 10-kg impactor was used to deliver the impact to the crown at a nominal velocity of 8 m/s for the first series, and between 7 and 11 m/s for the second series. Measurements made in the first series include the impact velocity, force, and energy, the head three-dimensional kinematics, forces and moments at the occipital condyles, and accelerations of the T1, T6, and T12 vertebrae. Impact impedance curves were also generated.
Technical Paper

Advanced Anthropomorphic Test Device Concept Definition

1985-01-01
856030
This paper summarizes the results of Phase 1, Concept Definition, of the AATD program and identifies the reasons such a new test device is needed. The following areas are addressed: 1) injury priority from accident data; 2) current dummy design, use, and potential improvements; and 3) technical characteristics and design concepts for a new AATD, its data processing, and its certification systems.
X