Refine Your Search

null

Search Results

Viewing 1 to 12 of 12
Journal Article

Allocation-Based Fault Tolerant Control for Electric Vehicles with X-by-Wire

2014-04-01
2014-01-0866
This paper proposed a novel fault-tolerant control method based on control allocation via dynamic constrained optimization for electric vehicles with XBW systems. The total vehicle control command is first derived based on interpretation on driver's intention as a set of desired vehicle body forces, which is further dynamically distributed to the control command of each actuator among vehicle four corners. A dynamic constrained optimization method is proposed with the cost function set to be a linear combination of multiple control objectives, such that the control allocation problem is transformed into a linear programming formulation. An analytical yet explicit solution is then derived, which not only provides a systematic approach in handling the actuation faults, but also is efficient and real-time feasible for in-vehicle implementation. The simulation results show that the proposed method is valid and effective in maintaining vehicle operation as expected even with faults.
Technical Paper

Traffic Modeling Considering Motion Uncertainties

2017-09-23
2017-01-2000
Simulation has been considered as one of the key enablers on the development and testing for autonomous driving systems as in-vehicle and field testing can be very time-consuming, costly and often impossible due to safety concerns. Accurately modeling traffic, therefore, is critically important for autonomous driving simulation on threat assessment, trajectory planning, etc. Traditionally when modeling traffic, the motion of traffic vehicles is often considered to be deterministic and modeled based on its governing physics. However, the sensed or perceived motion of traffic vehicles can be full of errors or inaccuracy due to the inaccurate and/or incomplete sensing information. In addition, it is naturally true that any future trajectories are unknown. This paper proposes a novel modeling method on traffic considering its motion uncertainties, based on Gaussian process (GP).
Technical Paper

Design of Automatic Parallel Parking System Based on Multi-Point Preview Theory

2018-04-03
2018-01-0604
As one of advanced driver assistance systems (ADAS), automatic parking system has great market prospect and application value. In this paper, based on an intelligent vehicle platform, an automatic parking system is designed by using multi-point preview theory. The vehicle kinematics model was established, based on Ackermann steering principle. By analyzing working conditions of parallel parking, complex constraint condition of parking trajectory is established and reference trajectory based on sine wave is proposed. In addition, combined with multi-point preview theory, the design of trajectory following controller for automatic parking is completed. The cost function is designed, which consider the trajectory following effect and the degree of easy handling. The optimization of trajectory following control is completed by using the cost function.
Technical Paper

Online Hierarchical Fault-Adaptive Control for Advanced Life Support Systems

2004-07-19
2004-01-2441
This paper discusses a hierarchical online fault-adaptive control approach for Advanced Life Support (ALS) Systems. ALS systems contain a number of complex interacting subsystems. To avoid complexity in the models and online analysis, diagnosis and fault-adaptive control is achieved by local units. To maintain overall performance, the problem of resource management for contending concurrent subsystems has to be addressed. We implement a control structure, where predefined set-point specifications for system operation are used to derive optimizing utility functions for the subsystem controllers. We apply this approach in situations where a fault occurs in a system, and once the fault is isolated and identified, the controllers use the updated system model to derive new set point specifications and utility functions for the faulty system.
Technical Paper

Multi-objective Combination Optimization of Automobile Subframe Dynamic Stiffness

2023-04-11
2023-01-0005
Subframe is an important part of automobile chassis, which is connected with body, suspension control arm, powertrain mount, etc. The dynamic stiffness value of the connection point is an important performance index of the subframe, which affects the vibration of the vehicle body. This paper introduces the basic concept and related theory of dynamic stiffness, derives the theoretical formula of dynamic stiffness, and analyzes the frequency response of the key points of the subframe. In view of the fact that the dynamic stiffness of the subframe of a certain vehicle model is not up to the standard at some connection points, the dynamic stiffness CAE simulation analysis is carried out to determine the frequency range of insufficient dynamic stiffness and the connection points that need to be optimized.
Technical Paper

Emergency Steering Evasion Torque Assistance Based on Optimized Trajectory

2019-04-02
2019-01-0888
When automobile is at the threat of collisions, steering usually needs a shorter longitudinal distance than braking to avoid collision, especially at a high speed. In emergency steering evasion, the vehicle may be out of the road or colliding with obstacles ahead when the driver’s steering torque is excessive or insufficient. In view of the above problems, this paper presents an emergency steering evasion torque assistance system based on optimized trajectory. First, a feasible steering evasion area is established which treats the paths of excessive and insufficient steering as boundary conditions in this paper. An optimized trajectory is derived from the lateral acceleration of the vehicle and the time to the adjacent lane as optimization conditions. Second, a two degree of freedom vehicle model is used to represent dynamics of the vehicle.
Technical Paper

Development and Verification of Control Algorithm for Permanent Magnet Synchronous Motor of the Electro-Mechanical Brake Booster

2019-04-02
2019-01-1105
To meet the new requirements of braking system for modern electrified and intelligent vehicles, various novel electro-mechanical brake boosters (Eboosters) are emerging. This paper is aimed at a new type of the Ebooster, which is mainly consisted of a permanent magnet synchronous motor (PMSM), a two-stage reduction transmission and a servo mechanism. Among them, the PMSM is a vital actuator to realize the functions of the Ebooster. To get fast response of the Ebooster system, a novel control strategy employing a maximum torque per ampere (MTPA) control with current compensation decoupling and current-adjusting adaptive flux-weakening control is proposed, which requires the PMSM can operate in a large speed range and maintain a certain anti-load interference capability. Firstly, the wide speed control strategy for the Ebooster’s PMSM is designed in MATLAB/Simulink.
Technical Paper

Fault-Tolerant Control of Brake-by-Wire Systems Based on Control Allocation

2016-04-05
2016-01-0132
Brake-by-wire (BBW) system has drawn a great attention in recent years as driven by rapidly increasing demands on both active brake controls for intelligent vehicles and regenerative braking controls for electric vehicles. However, unlike conversional brake systems, the reliability of the brake-by-wire systems remains to be challenging due to its lack of physical connection in case of system failure. There are various causes for the failure of a BBW system, such as failure of brake controller, loss of sensor signals, failure of communication or even power supply, to name a few. This paper presents a fault-tolerant control under novel control architecture. The proposed control architecture includes a driver command interpreter module, a command integration module, a control allocation module, a fault diagnosis module and state observers. The fault-tolerant control is designed based on a quadratic optimal control method with consideration of actuator constraints.
Journal Article

Research on Automatic Joint Calibration Method of Multi 3D-LIDARs and Inertial Measurement Unit

2021-04-06
2021-01-0070
In the field of automatic driving, the combination of 3D LIDAR and inertial measurement unit (IMU) is a common sensor configuration scheme in laser point-cloud localization, high-precision map making and point-cloud target detection. So it is critical to calibrate LIDAR and IMU accurately. At present, due to the large volume and high cost of 3D LIDAR with high-line-number(Such as 64 lines or 128 lines), the configuration scheme of using multiple low-line-number 3D LIDARs appears in the automatic driving vehicle sensing system. However, the common calibration methods are not suitable for multi 3D LIDARs and IMU parameters calibration on autonomous vehicle, which have the disadvantages of cumbersome implementation and low accuracy. In this paper, a joint calibration test platform composed of dual LIDARs and IMU is assembled, and a method of precise automatic calibration based on GPS/RTK data is proposed.
Journal Article

Multi-task Learning of Semantics, Geometry and Motion for Vision-based End-to-End Self-Driving

2021-04-06
2021-01-0194
It’s hard to achieve complete self-driving using hand-crafting generalized decision-making rules, while the end-to-end self-driving system is low in complexity, does not require hand-crafting rules, and can deal with complex situations. Modular-based self-driving systems require multi-task fusion and high-precision maps, resulting in high system complexity and increased costs. In end-to-end self-driving, we usually only use camera to obtain scene status information, so image processing is very important. Numerous deep learning applications benefit from multi-task learning, as the multi-task learning can accelerate model training and improve accuracy with combine all tasks into one model, which reduces the amount of calculation and allows these systems to run in real-time. Therefore, the approach of obtaining rich scene state information based on multi-task learning is very attractive. In this paper, we propose an approach to multi-task learning for semantics, geometry and motion.
Technical Paper

Research on Artificial Potential Field based Soft Actor-Critic Algorithm for Roundabout Driving Decision

2024-04-09
2024-01-2871
Roundabouts are one of the most complex traffic environments in urban roads, and a key challenge for intelligent driving decision-making. Deep reinforcement learning, as an emerging solution for intelligent driving decisions, has the advantage of avoiding complex algorithm design and sustainable iteration. For the decision difficulty in roundabout scenarios, this paper proposes an artificial potential field based Soft Actor-Critic (APF-SAC) algorithm. Firstly, based on the Carla simulator and Gym framework, a reinforcement learning simulation system for roundabout driving is built. Secondly, to reduce reinforcement learning exploration difficulty, global path planning and path smoothing algorithms are designed to generate and optimize the path to guide the agent.
Technical Paper

Spatio-Temporal Trajectory Planning Using Search And Optimizing Method for Autonomous Driving

2024-04-09
2024-01-2563
In the field of autonomous driving trajectory planning, it’s virtual to ensure real-time planning while guaranteeing feasibility and robustness. Current widely adopted approaches include decoupling path planning and velocity planning based on optimization method, which can’t always yield optimal solutions, especially in complex dynamic scenarios. Furthermore, search-based and sampling-based solutions encounter limitations due to their low resolution and high computational costs. This paper presents a novel spatio-temporal trajectory planning approach that integrates both search-based planning and optimization-based planning method. This approach retains the advantages of search-based method, allowing for the identification of a global optimal solution through search. To address the challenge posed by the non-convex nature of the original solution space, we introduce a spatio-temporal semantic corridor structure, which constructs a convex feasible set for the problem.
X