Refine Your Search

Topic

Search Results

Standard

SPECIFICATION FOR TESTING GAS DISCHARGE LIGHT SOURCE SUBSYSTEM

2007-10-08
HISTORICAL
USCAR27
This specification is a general level subsystem light source specification that establishes test requirements of a Gas Discharge Light Source (GDLS) subsystem for use on passenger vehicles. The completed test data to this test specification is intended to be provided to the OEM by the Tier one lamp set maker as part of the lamp assembly PPAP. Re-testing shall be required if any portion of the approved GDLS experiences a design, manufacturing or component change. This document shall be applied to systems that meet the requirements for design, performance and validation established by government standards. The subsystem is defined as the ballast, igniter and light source and shall be tested as a subsystem and considered one test sample for the entire test sequence. A failure of any component in the test sample shall constitute a failure of the entire sample. Substitution or replacement of only the light source shall be allowed during testing.
Standard

NEW FINISH DEVELOPMENT DOCUMENT

2020-11-19
CURRENT
USCAR32-1
This standard lists variables that shall be investigated and reported as an initial investigation into new or revised surface finishes intended for use on fasteners. This standard provides instruction for producing a final report that will be used to determine if further investigation of a surface finish is justified. Further investigation may include tests and evaluations specific to an individual OEM prior to introduction/approval of the surface finish. The final report shall include the results, observations, and conclusions for all of the variables. The final report may be made up of several individual reports covering each variable. In all cases the laboratory performing the test, the test date and the report approver shall be included in the final report.
Standard

NEW FINISH DEVELOPMENT DOCUMENT

2007-03-13
HISTORICAL
USCAR32
This standard lists variables that shall be investigated and reported as an initial investigation into new or revised surface finishes intended for use on fasteners. This standard provides instruction for producing a final report that will be used to determine if further investigation of a surface finish is justified. Further investigation may include tests and evaluations specific to an individual OEM prior to introduction/approval of the surface finish. The final report shall include the results, observations, and conclusions for all of the variables. The final report may be made up of several individual reports covering each variable. In all cases the laboratory performing the test, the test date and the report approver shall be included in the final report.
Standard

FIELD CORRELATED LIFE TEST SUPPLEMENT TO SAE/USCAR-2

2001-12-01
HISTORICAL
USCAR20
This life test for underhood/passenger/trunk connector systems may be used in place of Section 5.8.6 (Connector System Electrical Test Flow Chart) of SAE/USCAR-2. All other requirements of SAE/USCAR-2 remain applicable even when this test is used. Refer to SAE/USCAR-2 and Connector/Terminal Supplier for appropriate power rating and current cycle Testing.
Standard

FIELD CORRELATED LIFE TEST SUPPLEMENT TO SAE/USCAR-2

2022-03-15
CURRENT
USCAR20-2
This life test for underhood/passenger/trunk connector systems may be used in place of Section 5.9.6, Connection System Electrical Table of SAE/USCAR-2. All other requirements of SAE/USCAR-2 remain applicable even when this test is used. Refer to SAE/USCAR-2 and Connector/Terminal Supplier for appropriate power rating and current cycle Testing.
Standard

FIELD CORRELATED LIFE TEST SUPPLEMENT TO SAE/USCAR-2

2004-06-23
HISTORICAL
USCAR20-1
This life test for underhood/passenger/trunk connector systems may be used in place of Section 5.9.6, Connection System Electrical Table of SAE/USCAR-2. All other requirements of SAE/USCAR-2 remain applicable even when this test is used. Refer to SAE/USCAR-2 and Connector/Terminal Supplier for appropriate power rating and current cycle Testing.
Standard

STANDARD FOR IN-TANK ELECTRIC FUEL PUMPS

1999-08-15
HISTORICAL
USCAR13
This standard covers the operational characteristics, environment, durability procedures, and test procedures for in-tank electric fuel pumps for automotive gasoline applications. Specific performance and test criteria used in conjunction with this procedure are specified on the pump drawing. Particular sections of this document may be required for all applications. This standard is intended to evaluate specific characteristics as a supplement to normal material inspections, dimensional checking, and in-process controls, and should in no way adversely influence other inspection operations.
Standard

TEST PROCEDURE FOR ELECTRICAL GROUND ATTACHMENTS

2022-02-25
HISTORICAL
USCAR26
This test procedure is intended to evaluate and/or validate electrical ground schemes for use on the body or chassis. There are two classes based on the expected environmental conditions. Exposed Grounds can be located anywhere in the vehicle (except on the powertrain) and is the class for which most schemes should be tested. Unexposed Grounds can only be used in the passenger compartment or trunk and as such are special cases. This procedure as written is not intended for testing powertrain grounds where high temperatures and vibration levels may be encountered. These situations may require modifications to this procedure and are left to the Responsible Engineer to determine. This specification does not specifically address validation of terminal to wire electrical crimps. Crimps are tested to SAE/USCAR-21
Standard

Initiator Technical Requirements and Validation

2005-06-06
CURRENT
USCAR28
This specification establishes the design, performance, and validation requirements for the initiator assembly used in airbag modules, seatbelt pretensioners and/or any other Electro-Explosive Devices (EED).
Standard

Automotive Grade Coaxial Cable Performance Specification

2006-01-02
HISTORICAL
USCAR29
This document specifies dimensional, functional and visual requirements for Automotive grade coaxial cable. This material will be designated AG for general-purpose automotive applications or AG LL for low loss applications. It is the responsibility of the user of this cable to verify the suitability of the selected product (based on dimensional, mechanical, electrical and environmental requirements) for its intended application. It is the responsibility of the supplier to retain and maintain records as evidence of compliance to the requirements detailed in this standard.
Standard

AUTOMOTIVE GRADE COAXIAL CABLE PERFORMANCE SPECIFICATION

2022-03-15
CURRENT
USCAR29-1
This document specifies dimensional, functional and visual requirements for Automotive grade coaxial cable. This material will be designated AG for general-purpose automotive applications or AG LL for low loss applications. It is the responsibility of the user of this cable to verify the suitability of the selected product (based on dimensional, mechanical, electrical and environmental requirements) for its intended application. It is the responsibility of the supplier to retain and maintain records as evidence of compliance to the requirements detailed in this standard.
Standard

PERFORMANCE SPECIFICATION FOR AUTOMOTIVE WIRE HARNESS RETAINER CLIPS

2017-05-10
HISTORICAL
USCAR44
This specification describes a method and acceptance criteria for testing automotive wire harness retainer clips. Retainer clips are plastic parts that hold a wire harness or electrical connector in a specific position. Typical plastic retainers work by having a set of “branches” that can be inserted into a hole sized to be easy to install but provide acceptable retention. This specification tests retainer clips for mechanical retention when exposed to the mechanical and environmental stresses typically found in automotive applications over a 15-year service life. This specification has several test options to allow the test to match to the expected service conditions. The variability of applications typically arises a) from different ambient temperatures near the clip, different proximity to automotive fluids, different exposure to standing water or water spray and different thicknesses of the holes that the clip is inserted into.
Standard

PERFORMANCE SPECIFICATION FOR AUTOMOTIVE WIRE HARNESS RETAINER CLIPS

2021-01-20
HISTORICAL
USCAR44-1
This specification describes a method and acceptance criteria for testing automotive wire harness retainer clips. Retainer clips are plastic parts that hold a wire harness or electrical connector in a specific position. Typical plastic retainers work by having a set of “branches” that can be inserted into a hole sized to be easy to install but provide acceptable retention. This specification tests retainer clips for mechanical retention when exposed to the mechanical and environmental stresses typically found in automotive applications over a 15-year service life. This specification has several test options to allow the test to match to the expected service conditions. The variability of applications typically arises from different ambient temperatures near the clip, different proximity to automotive fluids, different exposure to standing water or water spray, and different thicknesses of the holes that the clip is inserted into.
Standard

PERFORMANCE SPECIFICATION FOR AUTOMOTIVE WIRE HARNESS RETAINER CLIPS

2023-03-23
CURRENT
USCAR44-2
This specification describes a method and acceptance criteria for testing automotive wire harness retainer clips. Retainer clips are plastic parts that hold a wire harness or electrical connector in a specific position. Typical plastic retainers work by having a set of “branches” that can be inserted into a hole sized to be easy to install but provide acceptable retention. This specification tests retainer clips for mechanical retention when exposed to the mechanical and environmental stresses typically found in automotive applications over a 15-year service life. This specification has several test options to allow the test to match to the expected service conditions. The variability of applications typically arises from different ambient temperatures near the clip, different proximity to automotive fluids, different exposure to standing water or water spray, and different thicknesses of the holes that the clip is inserted into.
Standard

LEAD-FREE SOLDER VALIDATION TEST PLAN

2020-11-19
CURRENT
USCAR40-2
This guideline is applicable to existing lead solder production products that will change to lead-free solder processes to meet the ELV Directive 2000/53/EC Annex II, exemption 8B requirements. This guideline is applicable to similar products used by multiple OEM's that have the same manufacturing processes / equipment. The intent is to streamline the supplier’s environmental testing via common qualification to reduce timing, quantities, and costs.
X