Refine Your Search

Search Results

Journal Article

Fracture Modeling of AHSS in Component Crush Tests

2011-04-12
2011-01-0001
Advanced High Strength Steels (AHSS) have been implemented in the automotive industry to balance the requirements for vehicle crash safety, emissions, and fuel economy. With lower ductility compared to conventional steels, the fracture behavior of AHSS components has to be considered in vehicle crash simulations to achieve a reliable crashworthiness prediction. Without considering the fracture behavior, component fracture cannot be predicted and subsequently the crash energy absorbed by the fractured component can be over-estimated. In full vehicle simulations, failure to predict component fracture sometimes leads to less predicted intrusion. In this paper, the feasibility of using computer simulations in predicting fracture during crash deformation is studied.
Journal Article

Development of Empirical Shear Fracture Criterion for AHSS

2010-04-12
2010-01-0977
The conventional forming limit curve (FLC) has been widely and successfully used as a failure criterion to detect localized necking in stamping. However, in stamping advanced high strength steels (AHSS), under certain circumstances such as stretching-bending over a small die radius, the sheet metal fails much earlier than predicted by the FLC. This type of failure on the die radius is commonly called “shear fracture.” In this paper, the laboratory Stretch-Forming Simulator (SFS) and the Bending under Tension (BUT) tester are used to study shear fracture occurring during both early and later stages of stamping. Results demonstrate that the occurrence of shear fracture depends on the combination of the radius-to-thickness (R/T) ratio and the tension/stretch level applied to the sheet during stretching or drawing. Based on numerous experimental results, an empirical shear fracture limit curve or criterion is obtained.
Journal Article

AHSS Shear Fracture Predictions Based on a Recently Developed Fracture Criterion

2010-04-12
2010-01-0988
One of the issues in stamping of advanced high strength steels (AHSS) is the stretch bending fracture on a sharp radius (commonly referred to as shear fracture). Shear fracture typically occurs at a strain level below the conventional forming limit curve (FLC). Therefore it is difficult to predict in computer simulations using the FLC as the failure criterion. A modified Mohr-Coulomb (M-C) fracture criterion has been developed to predict shear fracture. The model parameters for several AHSS have been calibrated using various tests including the butter-fly shaped shear test. In this paper, validation simulations are conducted using the modified (M-C) fracture criterion for a dual phase (DP) 780 steel to predict fracture in the stretch forming simulator (SFS) test and the bending under tension (BUT) test. Various deformation fracture modes are analyzed, and the range of usability of the criterion is identified.
Journal Article

Deformation Analysis of Incremental Sheet Forming

2010-04-12
2010-01-0991
Incremental Sheet Forming (ISF) is an emerging sheet metal prototyping technology where a part is formed as one or more stylus tools are moving in a pre-determined path and deforming the sheet metal locally while the sheet blank is clamped along its periphery. A deformation analysis of incremental forming process is presented in this paper. The analysis includes the development of an analytical model for strain distributions based on part geometry and tool paths; and numerical simulations of the forming process with LS-DYNA. A skew cone is constructed and used as an example for the study. Analytical and numerical results are compared, and excellent correlations are found. It is demonstrated that the analytical model developed in this paper is reliable and efficient in the prediction of strain distributions for incremental forming process.
Journal Article

Experimental Study of Edge Stretching Limits of DP980IBF Steel in Multistage Forming Process

2015-04-14
2015-01-0525
Automotive structural parts made out of Advanced High Strength Steel (AHSS) are often produced in a multistage forming process using progressive dies or transfer dies. During each forming stage the steel is subjected to work hardening, which affects the formability of the steel in the subsequent forming operation. Edge flanging and in-plane edge stretching operations are forming modes that are typically employed in the last stage of the multistage forming processes. In this study, the multistage forming process was simulated by pre-straining a DP980 steel in a biaxial strain path with various strain levels followed by edge flanging and in-plane edge stretching. The biaxial prestrains were obtained using the Marciniak stretch test and edge flanging and in-plane edge stretching were accomplished by the hole expansion test using a flat punch and a conical punch, respectively.
Journal Article

Optimized AHSS Structures for Vehicle Side Impact

2012-04-16
2012-01-0044
Advanced high strength steels (AHSS) have been widely accepted as a material of choice in the automotive industry to balance overall vehicle weight and stringent vehicle crash test performance targets. Combined with efficient use of geometry and load paths through shape and topology optimization, AHSS has enabled vehicle manufacturers to obtain the highest possible ratings in safety evaluations by the Insurance Institute for Highway Safety (IIHS) and the National Highway Traffic Safety Administration (NHTSA). In this study, vehicle CAE side impact models were used to evaluate three side impact crash test conditions (IIHS side impact, NHTSA LINCAP and FMVSS 214 side pole) and the IIHS roof strength test condition and to identify several key components affecting the side impact test performance. HyperStudy® optimization software and LS-DYNA® nonlinear finite element software were utilized for shape and gauge optimization.
Technical Paper

Prestrain Effects on Static Dent Resistance of Automotive Steels

1991-02-01
910288
In previous investigations, it has been shown that the dent resistance of an auto body panel depends upon the yield strength of the material. However, it is known that the yield strength of steel increases with prestrain due to strain hardening. Panel design and material selection based on the material properties obtained from unstrained sheet steels may lead to inaccurate prediction of the dent resistance of the formed panel. In this study, the effect of prestrain on the static dent resistance of auto body panels was investigated. Using existing empirical relationships between dent resistance and panel properties, it was found that the static dent resistance of an auto panel depends not only on the part geometry and material properties but also on the strain level in the panel. The improvement in dent resistance resulting from a material change from an AKDQ steel to a bake hardenable steel or a high strength steel was determined at different strain levels.
Technical Paper

Mass Efficient Cross-Sections Using Dual Phase Steels For Axial and Bending Crushes

2007-04-16
2007-01-0978
Because of their excellent crash energy absorption capacity, dual phase (DP) steels are gradually replacing conventional High Strength Low Alloy (HSLA) steels for critical crash components in order to meet the more stringent vehicle crash safety regulations. To achieve optimal axial and bending crush performance using DP steels for crash components designed for crash energy absorption and/or intrusion resistance applications, the cross sections need to be optimized. Correlated crush simulation models were employed for the cross-section study. The models were developed using non-linear finite element code LS-DYNA and correlated to dynamic and quasi-static axial and bending crush tests on hexagonal and octagonal cross-sections made of DP590 steel. Several design concepts were proposed, the axial and bending crush performance in DP780 and DP980 were compared, and the potential mass savings were discussed.
Technical Paper

Die Wear Severity Diagram and Simulation

2007-04-16
2007-01-1694
Die wear is a significant issue in sheet metal forming particularly for stamping Advanced High-Strength Steels (AHSS) because of their higher strength and microstructure composition. Reliable predictions of the magnitude and distribution of die wear are essential if cost-effective wear-protection strategies are desired in the early stages of tooling development. A die Wear Severity Index (WSI) is introduced in this paper to quantify the magnitude of die wear, which in essence characterizes the frictional energy dissipation per unit area on the die surface throughout the entire forming cycle. It can be readily obtained as part of any finite element simulation of stamping process utilizing incremental solution techniques.
Technical Paper

Prediction of Stretch Flangeability Limits of Advanced High Strength Steels using the Hole Expansion Test

2007-04-16
2007-01-1693
More and more advanced high strength steels (AHSS) such as dual phase steels and TRIP steels are implemented in automotive components due to their superior crash performance and vehicle weight reduction capabilities. Recent trends show increased applications of higher strength grades such as 780/800 MPa and 980/1000 MPa tensile strength for crash sensitive components to meet more stringent safety regulations in front crash, side impact and roll-over situations. Several issues related to AHSS stamping have been raised during implementation such as springback, stretch bending fracture with a small radius to thickness ratio, edge cracking, etc. It has been shown that the failure strains in the stretch bending fracture and edge cracking can be significantly lower than the predicted forming limits, and no failure criteria are currently available to predict these failures.
Technical Paper

Development of Shear Fracture Criterion for Dual-Phase Steel Stamping

2009-04-20
2009-01-1172
Forming Limit Diagrams (FLD) have been widely and successfully used in sheet metal stamping as a failure criterion to detect localized necking, which is the most common failure mechanism for conventional steels during forming. However, recent experience from stamping Dual-Phase steels found that, under certain circumstances such as stretching-bend over a small die radius, the sheet metal fails earlier than that predicted by the FLD based on the initiation of a localized neck. It appears that a different failure mechanism and mode are in effect, commonly referred to as “shear fracture” in the sheet metal stamping community. In this paper, experimental and numerical analysis is used to investigate the shear fracture mechanism. Numerical models are established for a stretch-bend test on DP780 steel with a wide range of bend radii for various failure modes. The occurrences of shear fracture are identified by correlating numerical simulation results with test data.
Technical Paper

DP590 GI Mechanical Property Variability and Structural Response CAE Studies

2009-04-20
2009-01-0799
Advanced High Strength Steels (AHSS) such as DP590 HDGI are helping automakers meet increasingly higher structural performance requirements while maintaining or reducing weight of the vehicle body structure [7]. One of the issues facing design engineers implementing new materials such as AHSS is the lack of understanding the expected material variability within a steel supplier and also from one steel supplier to another; and how the variability affects product attribute performances. In this paper, we present an analysis of the aggregated mechanical property variability data obtained from several steel suppliers for a popular AHSS grade and also present studies related to the effect of material variability on structural responses.
Technical Paper

Springback Prediction Improvement Using New Simulation Technologies

2009-04-20
2009-01-0981
Springback is a major concern in stamping of advanced high strength steels (AHSS). The existing computer simulation technology has difficulty predicting this phenomenon accurately even though it is well developed for formability simulations. Great efforts made in recent years to improve springback predictions have achieved noticeable progress in the computational capability and accuracy. In this work, springback simulation studies are conducted using FEA software LS-DYNA®. Various parametric sensitivity studies are carried out and key variables affecting the springback prediction accuracy are identified. Recently developed simulation technologies in LS-DYNA® are implemented including dynamic effect minimization, smooth tool contact and newly developed nonlinear isotropic/kinematic hardening material models. Case studies on lab-scale and full-scale industrial parts are provided and the predicted springback results are compared to the experimental data.
Technical Paper

A Comparison of the Response of HSLA and Dual Phase Sheet Steel in Dynamic Crush

2001-10-16
2001-01-3101
Continuing pressure to reduce mass and cost of vehicles is driving the development of new high strength steel products with improved combinations of strength and formability. Galvanized, cold rolled dual phase steel products are new alternatives to conventional high strength low alloy (HSLA) steel for strength limited applications in vehicles. These steels have higher tensile strengths than HSLA products with nearly equivalent formability. This paper compares the performance of HSLA and dual phase sheet steel products in a series of drop tower tests. Samples were prepared by stamping the steel sheets into typical rail-type parts using a production-intent die process. The parts were sectioned, and subsequently fabricated into hat-shaped assemblies that were then dynamically crushed by a drop weight. The experiments were designed such that the entire energy input by the drop weight was absorbed by the samples.
Technical Paper

An Experimental Study of Springback for Dual Phase Steel and Conventional High Strength Steel

2001-10-16
2001-01-3106
An experimental study of springback was conducted for a hat channel section with varying cross sections and controlled gap between punch and die. The channel section was formed in a single step forming process with upper pressure pad. DP590 steel was compared to a group of high strength steels (HSS), e.g. HSLA270, 340 and 420. In addition, sidewall curl phenomenon was studied utilizing bending under tension test. This paper describes methodology of experiment and discusses springback related results. It also offers recommendations that can be applied to die-punch gap control or material substitution situations. The results of this investigation can be used to verify accuracy of springback predictions in finite element analysis (FEA).
Technical Paper

An Evaluation of Interface Friction in Different Forming Models for Coated Steel Sheets

1992-02-01
920633
Interface friction between sheet metal and tooling in sheet metal forming is examined in different forming modes using laboratory simulative tests. Stretchability is studied by the limiting dome height test; drawability is investigated by a four inch Swift cup draw test and the coefficient of friction is measured by the draw bead simulator under bending and unbending deformation. The responses of the interface friction in six different coated and uncoated steel sheets are studied using seven different lubricants. It is found that the interface friction between sheet metal and tooling is very sensitive to the forming mode and the type of coating. For the same lubricant and coated material, two different forming modes may produce very different results in interface friction. However, overall good and bad lubricants for all forming modes can be determined for a given coated material using these three tests.
Technical Paper

Strain Rate Sensitivity of Automotive Steels

1992-02-01
920245
Strain rate sensitivity is an important material property in the formability of sheet metal. In this study, strain rate sensitivity is evaluated for several different grades of steel. Strain rate sensitivity varies from 0.01 to 0.022 for the steels tested. It was found that formable steels such as IF and AKDQ steels have both high n-value (strain hardening) and m-value (strain rate sensitivity). Positive strain rate sensitivity results in a significant increase in the yield strength and tensile strength at higher strain rates. The n-value decreases with strain rate for all of the steels. The total elongation decreases slightly with strain rate for the lower strength steels but is constant or even increases slightly with strain rate for high strength steels. For a typical AKDQ steel, the increase in yield strength can be as high as 43% for an increase in strain rate from 0.002 /s to 2.0 /s.
Technical Paper

The Prestrain Effect on the Sheared Edge Flangeability of Dual Phase 780 Steels

2012-04-16
2012-01-0533
Edge flanging represents one of the forming modes employed in multistage forming, and advanced high strength steels (AHSS) are more prone to edge cracking during sheared edge flanging than the conventional high strength steels (HSS) and mild steels. The performance of the sheared edge in flanging operation depends on the remaining ductility of the material in the sheared edge after the work hardening (WH) and damage produced by blanking and subsequent forming operations. Therefore, it is important to analyze the effect of work hardening produced by blanking and subsequent forming operations prior to edge flanging on the edge flanging performance. In this study, the effect of different forming operation sequences prior to edge flanging on the edge flanging performance was analyzed for a dual phase 780 steel.
Technical Paper

Understanding Through-Thickness Integration in Springback Simulation

2006-04-03
2006-01-0147
The “adequate” number of integration points (NIP) required to achieve accurate springback simulation results is studied in this paper in an effort to clarify confusions reported in the literature and shed light on the origin of the confusion. A bending-under-tension model is adopted where springback solution can be obtained with analytical integration through metal thickness. Numerical integrations are then performed and compared with analytical solution to assess associated errors. A crucial distinction is made in the paper that, the model can be posed either as a displacement-value problem where both tension strain and bending radius are prescribed or as a mixed-value problem where the tension force and bending radius are prescribed. Although they are physically equivalent due to the uniqueness of solution, the numerical solutions are different. The associated errors in springback respond differently to the number of integration points employed.
Technical Paper

An Investigation of Springback Stresses in Deep-Drawn Cups Using Diffraction Techniques

2005-04-11
2005-01-0498
Prediction of springback has become a major focus in sheet metal forming. Validation of finite element codes that are being developed to predict springback require accurate property data and a more complete understanding of the residual stresses that are involved. To provide experimental data for these calculations, neutron and synchrotron X-ray diffraction measurements were carried out to determine the through-thickness distribution of axial and hoop (or tangential) residual stresses in deep-drawn steel and aluminum cups. The techniques are able to provide true spatial resolutions as low as 0.05 mm for a strain measurement on cups with ≤ 1 mm wall thickness. It was found that the stresses exhibit non-linear gradients through the thickness that also depend on the axial position.
X