Refine Your Search

Topic

Affiliation

Search Results

Technical Paper

Influence of Sharing Bus on Real-Time Networked Control Systems Performance

2007-11-28
2007-01-2692
A major trend in modern aerospace and automotive systems is to integrate computing, communication and control into different levels of the vehicle and/or its supervision. A well fitted architecture adopted by this trend is the common bus network architecture. A Networked Control System (NCS) is called when the control loop is closed through a communication network. The presence of this communication network introduces new characteristics (sharing bus, delays, jitter,etc) to be considered at design time of a control system. This work focuses on the effect of sharing bus between the control system and the other devices connected to the bus foreigner to control. These last devices are called interferences. We intented to show, through simulations, the influence of sharing bus on real time control systems performance. To compare effects, we choose the CanBus protocol where the medium access control is event driven; and the TTP protocol where the medium access control is time driven.
Technical Paper

Identification of the Longitudinal Mode of an Aircraft by Using Time and Frequency Response Methods

2007-11-28
2007-01-2844
This work presents the identification of the longitudinal mode of an aircraft by using time and frequency response methods. To do this, the transfer function was identified based on the sampled response to a step input. The transfer function was validated comparing the model step response with the original system step response. The identification of the system transfer function was performed by using the Fast Fourier Transform (FFT) and Bode Graphs methods. The model validation quantification was performed by means of the mean quadratic-error method applied to the step response difference. Based on that, the identified model was considered to be quite representative, thus proving the suitability of the applied methods.
Technical Paper

Generation and Customization of Real Time Code for Embedded Controllers Using a Modeling and Simulation Environment

2007-11-28
2007-01-2924
This works presents the generation and customization of real time code for embedded controllers using a modeling and simulation environment. When the controller model is considered satisfactory, the developers can use a code generation tool to build a real time source code capable to be migrated to an embedded target processor. The code generation tool used is capable to generate real time code in ANSI C or ADA 95 languages. This process can be customized to adequate to a target processor and/or a Real Time Operating System (RTOS). The code customization can be achieved using a specific Template Programming Language (TPL) that specifies how the code will be generated. This technique makes it possible the instantiation of real time embedded controllers code using the same controller model to a wide variety of target processors and/or RTOSs.
Technical Paper

Design of an Attitude Control System for the Multi-Mission Platform and its Migration to a Real Time Operating System

2007-11-28
2007-01-2857
This paper presents the first of four parts of the academic design of an Attitude Control System (ACS) for the Multi-Mission Platform (MMP) and its migration to a Real Time Operating System. The MMP is a three axis stabilized artificial satellite now under development at the National Institute for Space Research (INPE). Such design applied some software engineering concepts as: 1)visual modeling; 2)automatic code generation; 3)automatic code migration; 4)soft real time simulation; and 5)hard real time simulation. A block diagram based modeling and a virtual time simulation of the MMP ACS in its nominal operational mode were built in the MatrixX 7.1 environment satisfying the three axis pointing and stabilization requirements. After that, its AutoCode module was used to generate C ANSI code representing the block diagram model. Time characteristics were added to the ACS generated code to make it the real time control software of MMP nominal operational mode.
Technical Paper

Propagation of Uncertainties in the Navigation of Aerospace Vehicles to Minimize the Collision Risk

2008-10-07
2008-36-0407
One challenge that the space, aeronautical and automotive industries are facing today is the fast growing number of vehicles versus the slowly growing number of useful orbits, routes, and speedways. Furthermore, the adoption of “free-flight”, “speed-drive”, etc. policies in the near future will only aggravate it. All these factors increase the risk of collisions and the frequency of deviation maneuvers to avoid them. But they also create the opportunity to devise policies to mitigate such problems, including algorithms to propagate the uncertainties in vehicle motions and to predict the risk of their collisions. This work discusses the development and simulation of an algorithm for the propagation of navigation uncertainties in the trajectory of aerospace vehicles, to minimize the risk of collisions. The scenario of Satellites Formation Flying shall be used for the simulations, with focus on the prediction of the collision probability.
Technical Paper

Fault Detection and Diagnosis (FDD) on a Knock Sensor

2008-10-07
2008-36-0369
The purpose of this work is Fault Detection and Diagnosis (FDD) on a Knock Sensor because some of the modern petrol engines operate on the efficient four-stroke cycle, where each cylinder of the engine contains an intake and exhaust poppet valve that is operated at the appropriate time. The ECM (Engine Control Module) uses the Knock Sensor signal to control timing. The Knock Sensor detects engine knock and sends voltage signal to the ECM. These signals can be sufficient to detect abnormal combustion, like ‘spark knock’ and ‘surface ignition’. Engine knock occurs within a specified range. The Knock Sensor, located in the engine block, cylinder head, or intake manifold is tuned to detect that frequency, which motivates the use of signal models for detection. But this sensor is a wide-band accelerometer of the piezoelectric type too. Analogy with a general seismic mass system is possible since it is a general damped second order vibrating system which is forced into oscillatory motion.
Technical Paper

Automatic Code Generation of an Attitude Control System for the Multi-Mission Platform

2008-10-07
2008-36-0362
This paper presents the automatic code generation process of the academic design of an Attitude Control System (ACS) for the Multi-Mission Platform (MMP). The MMP is a three axis stabilized artificial satellite now under development at the National Institute for Space Research (INPE). Such design applied some software engineering concepts as: 1)visual modeling; 2)automatic code generation; 3)automatic code migration; 4)soft real time simulation; and 5)hard real time simulation. A block diagram based modeling and a virtual time simulation of the MMP ACS in its nominal operational mode were built in the MatrixX 7.1 environment satisfying the three axis pointing and stabilization requirements. After that, its AutoCode module was used to generate C ANSI code representing the block diagram model. Four operating systems were used for code migration: 1)Windows 2000; 2)Mandrake Linux 10.1; 3)RedHawk Linux 2.1; and 4)RTEMS 4.6.2.
Technical Paper

Automatic Generation, Migration, and Tests of a Real Time Code to an Embedded Controller

2008-10-07
2008-36-0342
A constant challenge for the mobility engineering is to build correctly, the right product at the right time, cost and quality. This challenge gives opportunities to adopt new paradigms in system development, especially in generation, migration and tests of controller codes. This work presents the automatic generation, migration, and tests of real time code to an embedded controller. This is part of the Attitude and Orbit Control System (AOCS) for the Multi-Mission Platform (MMP) of the National Institute for Space Research (INPE). The modeling and simulation paradigm associated with automatic code generation makes possible the migration of a real time embedded controller code to a wide variety of target processors and/or Real Time Operating Systems (RTOS) using the same controller model. The MATRIXx (XMath/SystemBuild/AutoCode/DocumentIt) modeling and simulation environment was used to analyze and design the controller and generate its real time code.
Technical Paper

Analysis, Design and Simulation of the Transition from Pre-Nominal to Nominal Mode of the Reconfigurable Control Architecture for the Multi-Mission Platform

2008-10-07
2008-36-0343
This work presents the first part of the analysis, design and simulation of the reconfigurable control architecture for the Multi-Mission Platform (MMP), a generic service module currently under design at INPE. Its control system can be switched among nine main Modes of Operation. The implementation followed the specifications when they were found, otherwise it was designed. The manager block of the control system was implemented as a finite state machine. The tests were based in simulations with the MatriX/SystemBuild software. They focused mainly on the worst cases that the satellite is supposed to endure in its mission.
Technical Paper

Influences of Data Bus Protocols on an Aircraft Fly-By-Wire Networked Control System

2008-10-07
2008-36-0008
A major trend in modern aerospace and automotive systems is to integrate computing, communication and control into different levels of the vehicle and/or its supervision. A well fitted architecture adopted by this trend is the Common Bus Network Architecture. A Networked Control System (NCS) is called when the control loop is closed through a communication network. The presence of this communication network introduces new characteristics (sharing bus, delays, jitter etc.) to be considered at design time of a control system. This work focuses on the influences of data bus protocols on an aircraft Fly-By-Wire (FBW) networked control system. We intent to show, through simulations, the influences of sharing bus on a real time control system. To compare effects, we choose the CAN Bus protocol where the medium access control is event driven; and the TTP protocol where the medium access control is time driven.
Technical Paper

Simulation Architechtures and Standards: Their Characteristics and Applications to the Simulation and Control of Aerospace Vehicles

2008-10-07
2008-36-0271
In this work we discuss some types of simulation architectures and standards, their characteristics and applications to the simulation and control of aerospace vehicles. This includes: the basic definitions, types and characteristics of simulators and simulations (physical, computational, hybrid, etc.; discrete events, discrete time, continuous time, etc; deterministic, stochastic, etc.) their basic compromise (simplicity x fidelity), their man-machine interfaces and interactions (virtual, constructive, live, etc.), their evolution law (time, events, mixed, etc.), their architectures (“stand-alone”, PIL, HIL, MIL, DIS, HLA, etc.), their standards (OMBA, SIMNET, ALSP, DIS, HLA 1.3, HLA 1516, ASIA, AP2633, etc.) and their applications to the simulation and control of aerospace vehicles. This is illustrated by some examples driven from the aerospace industry
Technical Paper

Distributed Simulation of the Longitudinal Mode of an Aircraft by Using the DoD High Level Architecture (HLA)

2008-10-07
2008-36-0299
This work presents the distributed simulation of the longitudinal mode of an aircraft by using the DoD High Level Architecture (HLA). The HLA is a general-purpose architecture for simulation reuse and interoperability. This architecture was developed under the leadership of the Defense Modeling and Simulation Office (DMSO) to support reuse and interoperability across the large numbers of different types of simulations developed and maintained by the DoD. To do this, the transfer function of the longitudinal mode of a hypothetical aircraft was implemented by means of a SystemBuild/MATRIXx model. The output of this model was connected to a Run-Time Infrastructure (RTI) and monitored on a remote computer. The connection between the model and the RTI was implemented by using a wrapper which was developed in C++. The HLA RTI implementation used in this work was the poRTIco.
Technical Paper

Stability degradation due to delays in a networked control systems

2008-10-07
2008-36-0286
In this work, still under development, we study the stability degradation due to delays in a networked control system. Our networked system is composed by: 1) a computer with Rate Monotonic Scheduler policy and, 2) a communication network based on TDMA access. Under this scenario, we analyze an integrated communication-computing delay and define the worst delay. The simulations shows that the presence of a worst delay can be determined only with an extensive analysis. The simulations were done in Matlab/Simulink with the help of Truetime toolbox.
Technical Paper

A Worst Case Formula for a Communication and Computation Delay in NCS.

2010-10-06
2010-36-0358
A major trend in modern aerospace and automotive systems is to integrate computing, communication and control into different levels of the vehicle and/or its supervision. A well-fitted architecture adopted by this trend is the common bus network architecture. A Networked Control System (NCS) is called when the control loop is closed through a communication network. The presence of this communication network introduces new characteristics that must be considered at the design time of a control system. This work, still in development, focuses on a worst case formula for a communication (TDMA) plus computation (RMS) on a NCS. This formula, in a first instance, agrees with the simulated cases under the hypotheses and conditions when the NCS is composed by 1 actuator - 1 sensor and when is composed by 2 actuators - 2 sensors. In the future, we intend to generalize this formula and extend this study to NCS that uses other communication protocols or others computer schedulers.
Technical Paper

Study on a Fault-Tolerant System Applied to an Aerospace Control System

2010-10-06
2010-36-0330
On several engineering applications high Reliability is one of the most wanted features. The aspects of Reliability play a key role in design projects of aircraft, spacecraft, automotive, medical, bank systems, and so, avoiding loss of life, property, or costly recalls. The highly reliable systems are designed to work continuously, even upon external threats and internal Failures. Very convenient is the fact that the term 'Failure' may have its meaning tailored to the context of interesting, as its general definition refers to it as "any deviation from the specified behavior of a system". The above-mentioned 'deviation' may refer to: performance degradation, operational misbehavior, deviation of environmental qualification levels, Safety hazards, etc. Nevertheless, Reliability is not the only requirement for a modern system. Other features as Availability, Integrity, Security and Safety are always part of the same technical specification, in a same level of importance.
Technical Paper

Analysis, Design and Simulation of the Reconfigurable Control Architecture for the Contingency mode of the Multimission Platform

2010-10-06
2010-36-0333
This work presents the analysis, design and simulation of the reconfigurable control architecture for the contingency mode of the MultiMission Platform (MMP). The MMP is a generic service module currently under design at INPE. Its control system can be switched among nine main Modes of Operation and other Sub-Modes, according to ground command or information coming from the control system, mainly alarms. The implementation followed the specifications when they were found, otherwise it was designed. They cover operations from detumbling after launcher separation and solar acquisition, to achieving payload nominal attitude and orbital corrections maneuvers. The manager block of the control system was implemented as a finite state machine. The tests are based in simulations with the MatriX/SystemBuild software. They focused mainly on the worst cases that the satellite is supposed to endure in its mission, be it during modes or transitions between modes and submodes.
Technical Paper

Simulators and Simulations: their Characteristics and Applications to the Simulation and Control of Aerospace Vehicles

2003-11-18
2003-01-3737
In this work we discuss some types of simulators and simulations, their characteristics and applications to the simulation and control of aerospace vehicles. This includes: the basic definitions, types and characteristics of simulators and simulations (physical, computational, hybrid, etc.; discrete events, discrete time, continuous time, etc; deterministic, stochastic, etc.) their basic compromise (simplicity × fidelity), their man-machine interfaces and interactions (virtual, constructive, live, etc.), their evolution law (time, events, mixed, etc.), their architectures (“standalone”, PIL, HIL, MIL, DIS, HLA, etc.), their environments (discrete, continuous, hybrid, etc.) and their applications to the simulation and control of aerospace vehicles. This is illustrated by some examples driven from the aerospace industry
Technical Paper

A Discussion on Time Synchronization and their Effects in Distributed Cyber-Physical Control Systems

2016-10-25
2016-36-0293
Cyber-physical systems are joint instances of growing complexity and high integration of elements in the information and physical domains reaching high levels of difficulty to engineer an operate them. This happens with satellites, aircraft, automobiles, smart grids and others. Current technologies as computation, communication and control integrate those domains to communicate, synchronize and operate together. However, the integration of different domains brings new challenges and adds new issues, mainly in real time distributed control systems, beginning with time synchronization. In this paper, we present a discussion on time synchronization and their effects in distributed cyber-physical control systems. To do that, we review the literature, discuss some time synchronization techniques used in cyber-physical systems, and illustrate them via model and simulation of a system representative of the aerospace area.
Technical Paper

A First Strategy for Smoothing Transients in Switching Controls of Aerospace and Automotive Systems

2016-10-25
2016-36-0402
Switching controls are those that can switch between control or plant modes to perform their functions. They have the advantage of being simpler to design than an equivalent control system with a single mode. However, the transients between those modes can introduce steps or overshootings in the state variables, and this can degrade the performance or even damage the control or the plant. So, the smoothing of such transients is vital for their reliability and mantainability. This is can be of extreme importance in the aerospace and automotive fields, plenty of switchings between manual and autopilot modes via relays, or among gears via clutches, for example. In this work, we present a first strategy for smoothing transients in switching controls of aerospace and automotive systems.
Technical Paper

Application of Methods to Smooth the Transition Between Control Submodes in the Nominal Mode of the Multimission Platform

2012-10-02
2012-36-0378
The Multimission Platform (MMP) is a generic service module currently in Project at INPE. In the 2001 version, its control system can be switched between nine main Operation Modes and other submodes, according to information from satellite sensors and ground commands. The Nominal Mode stabilizes the MMP in three axes and takes it to a nominal attitude, using three reaction wheels. Each wheel has coarse and fine acquisition submodes. The use of multiple modes of control for specific situations frequently is simpler than projecting a single controller for all cases. However, besides being harder to warrant its general stability, the mere switching between these submodes generates bumps, which can reduce the performance and even damage the actuator or plant. In this work, we present an application of diverse methods to smooth the transition between control submodes of the Nominal Mode of the MMP.
X