Refine Your Search

Topic

Search Results

Journal Article

Efficient Supercapacitors Based on Co9S8/Graphene Composites for Electric Vehicles

2018-04-03
2018-01-0440
Nowadays, SC is recognized as a key element of hybrid energy storage system in modern energy supply chain for electric vehicles (EVs). Co9S8 as a promising electrode material attracts much attention for supercapacitor owing to its superior electrochemical capacity. However, its poor stability and electronic conductivity, which result in inferior cycling performance and rate capability, have seriously limited the practical application of Co9O8 in supercapacitors. In this article, Co9S8 nanoparticles were embedded in reduced graphene oxide (rGO) via a simple anneal approach as high efficient and stable electrodes for SCs. The Co9S8/rGO composites were characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), and X-ray diffraction (XRD). The Co9S8 nanoparticles were inserted tightly between the rGO layers due to strong intermolecular forces, preventing the cluster in reduction process of rGO from graphene oxide (GO).
Technical Paper

Joint Calibration of Dual LiDARs and Camera Using a Circular Chessboard

2020-04-14
2020-01-0098
Environmental perception is a crucial subsystem in autonomous vehicles. In order to build safe and efficient traffic transportation, several researches have been proposed to build accurate, robust and real-time perception systems. Camera and LiDAR are widely equipped on autonomous self-driving cars and developed with many algorithms in recent years. The fusion system of camera and LiDAR provides state-of the-art methods for environmental perception due to the defects of single vehicular sensor. Extrinsic parameter calibration is able to align the coordinate systems of sensors and has been drawing enormous attention. However, differ from spatial alignment of two sensors’ data, joint calibration of multi-sensors (more than two sensors) should balance the degree of alignment between each two sensors.
Technical Paper

IMM-KF Algorithm for Multitarget Tracking of On-Road Vehicle

2020-04-14
2020-01-0117
Tracking vehicle trajectories is essential for autonomous vehicles and advanced driver-assistance systems to understand traffic environment and evaluate collision risk. In order to reduce the position deviation and fluctuation of tracking on-road vehicle by millimeter-wave radar (MMWR), an interactive multi-model Kalman filter (IMM-KF) tracking algorithm including data association and track management is proposed. In general, it is difficult to model the target vehicle accurately due to lack of vehicle kinematics parameters, like wheel base, uncertainty of driving behavior and limitation of sensor’s field of view. To handle the uncertainty problem, an interacting multiple model (IMM) approach using Kalman filters is employed to estimate multitarget’s states. Then the compensation of radar ego motion is achieved, since the original measurement is under the radar polar coordinate system.
Technical Paper

Vehicle Validation for Pressure Estimation Algorithms of Decoupled EHB Based on Actuator Characteristics and Vehicle Dynamics

2020-04-14
2020-01-0210
Recently, electro-hydraulic brake systems (EHB) has been developed to take place of the vacuum booster, having the advantage of faster pressure build-up and continuous pressure regulation. In contrast to the vacuum booster, the pressure estimation for EHB is worth to be studied due to its abundant resource (i.e. electric motor) and cost-effective benefit. This work improves an interconnected pressure estimation algorithm (IPEA) based on actuator characteristics by introducing the vehicle dynamics and validates it via vehicle tests. Considering the previous IPEA as the prior pressure estimation, the wheel speed feedback is used for modification via a proportional-integral (PI) observer. Superior to the IPEA based on actuator characteristics, the proposed PEA improves the accuracy by more than 20% under the mismatch of pressure-position relation.
Journal Article

Torque Vectoring Control for Distributed Drive Electric Vehicle Based on State Variable Feedback

2014-04-01
2014-01-0155
Torque Vectoring Control for distributed drive electric vehicle is studied. A handling improvement algorithm for normal cornering maneuvers is proposed based on state variable feedback control: Yaw rate feedback together with steer angle feedforward is employed to improve transient response and steady gain of the yaw rate, respectively. According to the feedback coefficient's influence on the transient response, an optimization function is proposed to obtain optimum feedback coefficients under different speeds. After maximum feedforward coefficients under different speeds are obtained from the constraint of the motor exterior characteristic, final feedforward coefficients are calculated according to an optimal steering characteristic. A torque distribution algorithm is presented to help the driver to speed up during the direct yaw moment control.
Journal Article

Differential Drive Assisted Steering Control for an In-wheel Motor Electric Vehicle

2015-04-14
2015-01-1599
For an electric vehicle driven by four in-wheel motors, the torque of each wheel can be controlled precisely and independently. A closed-loop control method of differential drive assisted steering (DDAS) has been proposed to improve vehicle steering properties based on those advantages. With consideration of acceleration requirement, a three dimensional characteristic curve that indicates the relation between torque and angle of the steering wheel at different vehicle speeds was designed as a basis of the control system. In order to deal with the saturation of motor's output torque under certain conditions, an anti-windup PI control algorithm was designed. Simulations and vehicle tests, including pivot steering test, lemniscate test and central steering test were carried out to verify the performance of the DDAS in steering portability and road feeling.
Journal Article

The Influences of the Subframe Flexibility on Handling and Stability Simulation When Using ADAMS/Car

2016-04-05
2016-01-1637
To analyze the K&C (kinematics and compliance), handling and stability performance of the vehicle chassis, some simulations are usually performed using a multi-body dynamics software named ADAMS. This software introduces assumptions that simplify the components of the suspension as rigid bodies. However, these assumptions weaken the accuracy of the simulation of ADAMS. Therefore the use of flexible bodies in K&C and handling and stability simulation in ADAMS is needed to conduct more precise suspension system designs. This paper mainly analyses the influences of the subframe flexibility on handling and stability simulation in ADAMS/Car. Two complete vehicle models are built using ADAMS/Car and Hypermesh. The only difference between the two models is the subframe of the front McPherson suspension. One of the subframes is simplified as a rigid body. The other one is a flexible body built using the MNF file from Hypermesh.
Journal Article

Anti-Lock Braking System Control Design on An Integrated-Electro-Hydraulic Braking System

2017-03-28
2017-01-1578
Two control strategies, safety preferred control and master cylinder oscillation control, were designed for anti-lock braking on a novel integrated-electro-hydraulic braking system (I-EHB) which has only four solenoid valves in its innovative hydraulic control unit (HCU) instead of eight in a traditional one. The main idea of safety preferred control is to reduce the hydraulic pressure provided by the motor in the master cylinder whenever a wheel tends to be locking even if some of the other wheels may need more braking torque. In contrast, regarding master cylinder oscillation control, a sinusoidal signal is given to the motor making the hydraulic pressure in the master cylinder oscillate in certain frequency and amplitude. Hardware-in-the-loop simulations were conducted to verify the effectiveness of the two control strategies mentioned above and to evaluate them.
Technical Paper

Heavy Truck Driveline Components Modeling and Thermal Analyzing

2009-10-06
2009-01-2905
In heavy truck driveline system, the components often include clutch, transmission, transfer case, drive shaft, etc. A fluid torque converter could be equipped in front of the transmission in order to improve the starting performance. Meanwhile, a hydraulic retarder could be introduced for auxiliary braking so as to adapt the truck to the brake on long downgrade in mountainous regions. Thus, the driveline heat load would have a notable increase. Both the fluid torque converter and the hydraulic retarder would produce a large quantity of heat, and a special cooling system is needed for adjusting the transmission fluid temperature with which the gains are potentially very large [1]. The heat load for driveline is often calculated based on empirical formula. For the heavy truck, however, if the heat value is underestimated, driveline components would suffer from overheated damage.
Technical Paper

Research on Road Simulator with Iterative Learning Control

2009-10-06
2009-01-2908
Road simulation experiment in laboratory is a most important method to enhance the design quality of vehicle products. Presently, two main control techniques for road simulation—remote parameter control (RPC) and minimum variance adaptive control—are both defective: the former becomes an open-loop control after generating the drive signals, however the latter is essentially a kind of gradual control. To realize the closed-loop control and increase the control quality, this article brings forward a PID open-closed loop control method. Firstly taking the original road simulator as a group to identify, a nonlinear autoregressive moving average (NARMA) model was built with the dynamic neural network. Subsequently, this plant model was used to build the open-closed loop control system mentioned above. In the closed-loop a discrete PID controller was introduced to stabilize the system, while a P-type iterative learning control (ILC) was adopted to increase the control quality.
Technical Paper

Research of Motor Control Based on Integrated-Electro-Hydraulic Braking System

2016-09-14
2016-01-1886
With development of vehicle advanced driver assistant system and intelligent techniques, safer and more intelligent Integrated-Electro-Hydraulic Braking System is required to realize brake-by-wire. Thus, more and more companies and universities developed Integrated-Electro-Hydraulic Braking System to fulfill these requirements. In this paper, an Integrated-Electro-Hydraulic Braking System is introduced, which consists of active source power, pedal feel emulator and electro control unit. As a composite system of mechanic, electron and hydraulic pressure, the Integrated-Electro-Hydraulic Braking System has complex system characteristics. Integrated-Electro-Hydraulic Braking System and active power source have very different dynamic characteristics. So algorithms of hydraulic pressure control and motor control should be apart, but algorithm of them should be united in hardware to meet integration demand.
Technical Paper

An Integrated-Electro-Hydraulic Brake System for Active Safety

2016-04-05
2016-01-1640
An integrated-electro-hydraulic brake system (I-EHB) is presented to fulfill the requirements of active safety. Because I-EHB can control the brake pressure accurately and fast. Furthermore I-EHB is a decoupled system, so it could make the maximum regenerative braking while offers the same brake pedal feeling and also good for ADAS and unmanned driving application. Based on the analysis of current electrohydraulic brake systems, regulation requirements and the requirements for brake system, the operating mode requirements of I-EHB are formed. Furthermore, system topological structure and a conceptual design are proposed. After the selection of key components, the parameter design is accomplished by modeling the system. According to the above-mentioned design method, an I-EHB prototype and test rig is made. Through the test rig, characteristics of the system are tested. Results show that this I-EHB system responded rapidly.
Technical Paper

Hydraulic Control of Integrated Electronic Hydraulic Brake System based on Command Feed-Forward

2016-04-05
2016-01-1658
With the development of vehicle electrification, electronic hydraulic brake system is gradually applied. Many companies have introduced products related to integrated electronic hydraulic brake system (I-EHB). In this paper, an I-EHB system is introduced, which uses the motor to drive the reduction mechanism as a power source for braking. The reduction mechanism is composed of a turbine, a worm, a gear and a rack. A control method based on command feed-forward is proposed to improve the hydraulic pressure control of I-EHB. Based on previous research, we simplify the system to first order system, and the theoretical design of the command feed-forward compensator is carried out. The feed-forward controller is applied, including the velocity feed-forward and the acceleration feed-forward, to improve the response speed and tracking effect of the system.
Technical Paper

Vehicle Stability Criterion Research Based on Phase Plane Method

2017-03-28
2017-01-1560
In this paper, a novel method is proposed to establish the vehicle yaw stability criterion based on the sideslip angle-yaw rate (β-r) phase plane method. First, nonlinear two degrees of freedom vehicle analysis model is established by adopting the Magic Formula of nonlinear tire model. Then, according to the model in the Matlab/Simulink environment, the β-r phase plane is gained. Emphatically, the effects of different driving conditions (front wheels steering angle, road adhesion coefficient and speed) on the stability boundaries of the phase plane are analyzed. Through a large number of simulation analysis, results show that there are two types of phase plane: curve stability region and diamond stability region, and the judgment method of the vehicle stability domain type under different driving conditions is solved.
Technical Paper

Speed Tracking Control for All-Terrain Vehicle Considering Road Slope and Saturation Constraint of Actuator

2017-09-23
2017-01-1953
In this paper, a speed tracking controller is designed for the All-terrain vehicles. The method of feedforward with state variable feedback based on conditional integrators is adopted by the proposed control algorithm. The feedforward is designed considering the influence of the road slope on the longitudinal dynamics, which makes the All-terrain vehicles satisfy the acceleration demand of the upper controller when it tracks the desired speed on the road with slope varying greatly. The road slope is estimated based on a combined kinematic and dynamic model. This method solves the problem that road slope estimation requires an accurate vehicle dynamic model and are susceptible to acceleration sensor bias. Based on the vehicle dynamic model and the nonlinear tire model, the method of conditional integration is used in the state variable feedback, which considers the saturation constraint of the actuator with the intention of preventing the divergent integral operation.
Technical Paper

Simultaneous Measurement of the Flame Lift-Off Length on Direct Injection Diesel Sprays Using High Speed Schlieren Imaging and OH Chemiluminescence

2017-10-08
2017-01-2307
Lift-off length is defined as the distance from injector hole to the location where flame stabilized on a high injection pressure direct injection (DI) diesel spray. In this paper we used the high-speed (40 kHz) Schlieren and time-averaged OH chemiluminescence imaging technique to simultaneously measure the flame lift-off locations on a DI diesel spray in an optically accessible and constant-volume combustion vessel. The time-resolved development of the diesel spray acquired from the high-speed Schlieren imaging system enabled us to observe the instantaneous spray structure details of the spray flames. The OH chemiluminescence image obtained from a gated, intensified CCD video camera with different delay and width settings was used to determine the quiescent lift-off length. Experiments were conducted under various ambient temperatures, ambient gas densities, injection pressures and oxygen concentrations.
Technical Paper

Adaptive Cascade Optimum Braking Control Based on a Novel Mechatronic Booster

2017-09-17
2017-01-2514
BBW (Brake-by-wire) can increase the electric and hybrid vehicles performance and safety. This paper proposes a novel mechatronic booster system, which includes APS (active power source), PFE (pedal feel emulator), ECU (electronic control unit). The system is easily disturbed when the system parameters and the outside conditions change. The system performance is weakened. The cascade control technique can be used to solve the problem. This paper develops an adaptive cascade optimum control (ACOC) algorithm based on the novel mechatronic booster system. The system is divided into main loop and servo loop, both of them are closed-loop system. The servo-loop system can eliminate the disturbance which exists in the servo loop. So the robustness of the cascade control system is improved than which of the general closed-loop control system. Different control object is respectively chosen. The control-oriented mathematical model is designed.
Technical Paper

Hydraulic Control of Integrated Electronic Hydraulic Brake System Based on LuGre Friction Model

2017-09-17
2017-01-2513
In this paper, an integrated electronic hydraulic brake(I-EHB) system is introduced, which is mainly composed of a motor, a worm gear, a worm, a gear, a rack etc. The friction leads the system to the creeping phenomenon and the dead zone. These phenomenon seriously affect the response speed and the hydraulic pressure control .In order to realize the accurate hydraulic pressure control of I-EHB system, a new friction compensation control method is proposed based on LuGre dynamic friction model. And the theoretical design of adaptive control method is designed based on the feedback of the master cylinder pressure and the operating state of the system. Then the stability of the control method is proved by Lyapunov theorem. A co-simulation model is built with Matlab/Simulink and AMESim, so as to prove the validity of the control method.
Technical Paper

A Nonlinear Dynamic Control Design with Conditional Integrators Applied to Unmanned Skid-steering Vehicle

2017-03-28
2017-01-1585
A dynamic controller is designed for unmanned skid-steering vehicle. The vehicle speed is controlled through driving torque of engine to achieve the desired vehicle speed and the steering is controlled through hydraulic braking on each side of the vehicle to achieve the desired yaw rate. Contrary to the common approaches by considering non-holonomic constraints, tire slip and saturation of actuators torque influencing the driving and braking are considered, based on the analysis of vehicle dynamic model and nonlinear tire model. Hence, with conditional integrators, the dynamic controller overcoming integral saturation is designed to ensure the accurate tracking for desired signals under influence of tire forces and constraint of actuators. In addition, the exponential kind filter is utilized to enhance the ability of smoothing noise of wheel speed. To perform small radius cornering maneuvers, a dynamic control strategy for steering when vehicle speed is zero is also designed.
Technical Paper

Vehicle Sideslip Angle Estimation Considering the Tire Pneumatic Trail Variation

2018-04-03
2018-01-0571
Vehicle sideslip angle is significant for electronic stability control devices and hard to estimate due to the nonlinear and uncertain vehicle and tire dynamics. In this paper, based on the two track vehicle dynamic model considering the tire pneumatic trail variation, the vehicle sideslip angle estimation method was proposed. First, the extra steering angle of each wheel caused by kinematics and compliance characteristics of the steering system and suspension system was analyzed. The steering angle estimation method was designed. Since the pneumatic trail would vary with different tire slip angle, distances between the center of gravity (COG) and front&rear axle also change with the tire slip angle. Then, based on the dynamic pneumatic trail and estimated steering angle, we modified the traditional two track vehicle dynamic model using a brush tire model. This model matches the vehicle dynamics more accurately.
X