Refine Your Search

Topic

Author

Affiliation

Search Results

Journal Article

An Experimental Investigation into Diesel Engine Size-Scaling Parameters

2009-04-20
2009-01-1124
With recent increases in global fuel prices there has become a growing interest in expanding the use of diesel engines in the transportation industry. However, new engine development is costly and time intensive, requiring many hours of expensive engine tests. The ability to accurately predict an engine's performance based on existing models would reduce the expense involved in creating a new engine of different size. In the present study experimental results from two single-cylinder direct injection diesel engines were used to examine previously developed engine scaling models. The first scaling model was based on an equal spray penetration correlation. The second model considered both equal spray penetration and flame lift-off length. The engines used were a heavy-duty Caterpillar engine with a 2.44L displacement and a light-duty GM engine with a 0.48L displacement.
Journal Article

Validation of Mesh- and Timestep- Independent Spray Models for Multi-Dimensional Engine CFD Simulation

2010-04-12
2010-01-0626
Resolution of droplet-scale processes occurring within engine sprays in multi-dimensional Computational Fluid Dynamics (CFD) simulations is not possible because impractically refined numerical meshes or time steps would be required. As a result, simulations that use coarse meshes and large time steps suffer from inaccurate predictions of mass, momentum and energy transfer between the spray drops and the combustion chamber gas, or poor prediction of droplet breakup and collision and coalescence processes. Several new spray models have been proposed to address these deficiencies, including use of an unsteady gas jet model to improve momentum transfer predictions in under-resolved regions of the spray, a vapor particle model to minimize numerical diffusion effects, and a Radius of Influence drop collision model to ensure consistent collision computations on different meshes.
Journal Article

A CFD Study of Post Injection Influences on Soot Formation and Oxidation under Diesel-Like Operating Conditions

2014-04-01
2014-01-1256
One in-cylinder strategy for reducing soot emissions from diesel engines while maintaining fuel efficiency is the use of close-coupled post injections, which are small fuel injections that follow the main fuel injection after a short delay. While the in-cylinder mechanisms of diesel combustion with single injections have been studied extensively and are relatively well understood, the in-cylinder mechanisms affecting the performance and efficacy of post injections have not been clearly established. Here, experiments from a single-cylinder heavy-duty optical research engine incorporating close- coupled post injections are modeled with three dimensional (3D) computational fluid dynamics (CFD) simulations. The overall goal is to complement experimental findings with CFD results to gain more insight into the relationship between post-injections and soot. This paper documents the first stage of CFD results for simulating and analyzing the experimental conditions.
Journal Article

Multi-Dimensional-Modeling-Based Development of a Novel 2-Zone Combustion Chamber Applied to Reactivity Controlled Compression Ignition Combustion

2015-04-14
2015-01-0840
A novel 2-zone combustion chamber concept (patent pending) was developed using multi-dimensional modeling. At minimum volume, an axial projection in the piston divides the volume into distinct zones joined by a communication channel. The projection provides a means to control the mixture formation and combustion phasing within each zone. The novel combustion system was applied to reactivity controlled compression ignition (RCCI) combustion in both light-duty and heavy-duty diesel engines. Results from the study of an 8.8 bar BMEP, 2600 RPM operating condition are presented for the light-duty engine. The results from the heavy-duty engine are at an 18.1 bar BMEP, 1200 RPM operating condition. The effect of several major design features were investigated including the volume split between the inner and outer combustion chamber volumes, the clearance (squish) height, and the top ring land (crevice) volume.
Journal Article

Assessment of Optimization Methodologies to Study the Effects of Bowl Geometry, Spray Targeting and Swirl Ratio for a Heavy-Duty Diesel Engine Operated at High-Load

2008-04-14
2008-01-0949
In the present paper optimization tools are used to recommend low-emission engine combustion chamber designs, spray targeting and swirl ratio levels for a heavy-duty diesel engine operated at high-load. The study identifies aspects of the combustion and pollution formation that are affected by mixing processes, and offers guidance for better matching of the piston geometry with the spray plume geometry for enhanced mixing. By coupling a GA (genetic algorithm) with the KIVA-CFD code, and also by utilizing an automated grid generation technique, multi-objective optimizations with goals of low emissions and fuel economy were achieved. Three different multi-objective genetic algorithms including a Micro-Genetic Algorithm (μGA), a Nondominated Sorting Genetic Algorithm II (NSGA II) and an Adaptive Range Multi-Objective Genetic Algorithm (ARMOGA) were compared for conducting the optimization under the same conditions.
Journal Article

The Impact of a Non-Linear Turbulent Stress Relationship on Simulations of Flow and Combustion in an HSDI Diesel Engine

2008-04-14
2008-01-1363
In-cylinder flow and combustion processes simulated with the standard k-ε turbulence model and with an alternative model-employing a non-linear, quadratic equation for the turbulent stresses-are contrasted for both motored and fired engine operation at two loads. For motored operation, the differences observed in the predictions of mean flow development are small and do not emerge until expansion. Larger differences are found in the spatial distribution and magnitude of turbulent kinetic energy. The non-linear model generally predicts lower energy levels and larger turbulent time scales. With fuel injection and combustion, significant differences in flow structure and in the spatial distribution of soot are predicted by the two models. The models also predict considerably different combustion efficiencies and NOx emissions.
Journal Article

Effects of Piston Bowl Geometry on Mixture Development and Late-Injection Low-Temperature Combustion in a Heavy-Duty Diesel Engine

2008-04-14
2008-01-1330
Low-temperature combustion (LTC) strategies for diesel engines are of increasing interest because of their potential to significantly reduce particulate matter (PM) and nitrogen oxide (NOx) emissions. LTC with late fuel injection further offers the benefit of combustion phasing control because ignition is closely coupled to the fuel injection event. But with a short ignition-delay, fuel jet mixing processes must be rapid to achieve adequate premixing before ignition. In the current study, mixing and pollutant formation of late-injection LTC are studied in a single-cylinder, direct-injection, optically accessible heavy-duty diesel engine using three laser-based imaging diagnostics. Simultaneous planar laser-induced fluorescence of the hydroxyl radical (OH) and combined formaldehyde (H2CO) and polycyclic aromatic hydrocarbons (PAH) are compared with vapor-fuel concentration measurements from a non-combusting condition.
Journal Article

Diesel Engine Size Scaling at Medium Load without EGR

2011-04-12
2011-01-1384
Several diffusion combustion scaling models were experimentally tested in two geometrically similar single-cylinder diesel engines with a bore diameter ratio of 1.7. Assuming that the engines have the same in-cylinder thermodynamic conditions and equivalence ratio, the combustion models primarily change the fuel injection pressure and engine speed in order to attain similar performance and emissions. The models tested include an extended scaling model, which scales diffusion flame lift-off length and jet spray penetration; a simple scaling model, which only scales spray penetration at equal mean piston speed; and a same speed scaling model, which holds crankshaft rotational velocity constant while also scaling spray penetration. Successfully scaling diffusion combustion proved difficult to accomplish because of apparent differences that remained in the fuel-air mixing and heat transfer processes.
Journal Article

Fuel Reactivity Controlled Compression Ignition (RCCI) Combustion in Light- and Heavy-Duty Engines

2011-04-12
2011-01-0357
Single-cylinder engine experiments were used to investigate a fuel reactivity controlled compression ignition (RCCI) concept in both light- and heavy-duty engines and comparisons were made between the two engine classes. It was found that with only small changes in the injection parameters, the combustion characteristics of the heavy-duty engine could be adequately reproduced in the light-duty engine. Comparisons of the emissions and performance showed that both engines can simultaneously achieve NOx below 0.05 g/kW-hr, soot below 0.01 g/kW-hr, ringing intensity below 4 MW/m2, and gross indicated efficiencies above 50 per cent. However, it was found that the peak gross indicated efficiency of the baseline light-duty engine was approximately 7 per cent lower than the heavy-duty engine. The energy balances of the two engines were compared and it was found that the largest factor contributing to the lower efficiency of the light-duty engine was increased heat transfer losses.
Journal Article

Computational Optimization of Reactivity Controlled Compression Ignition in a Heavy-Duty Engine with Ultra Low Compression Ratio

2011-09-11
2011-24-0015
Many studies have demonstrated ability of low temperature combustion to yield low NOx and soot while maintaining diesel-like thermal efficiencies. Methods of achieving low temperature combustion are numerous and range from using high cetane number fuels, like diesel, with large amounts of exhaust gas recirculation, to completely premixing a high octane number fuel, like gasoline, and approaching an HCCI-like condition. Both of the aforementioned techniques have relatively short combustion duration that results in very a rapid rate of heat release, and hence very rapid rates of pressure rise. This has been one of the major challenges for premixed, low temperature combustion at mid and high load. Reactivity Controlled Compression Ignition (RCCI) has been introduced recently, which is a dual fuel partially premixed combustion concept.
Journal Article

Combustion Model for Biodiesel-Fueled Engine Simulations using Realistic Chemistry and Physical Properties

2011-04-12
2011-01-0831
Biodiesel-fueled engine simulations were performed using the KIVA3v-Release 2 code coupled with Chemkin-II for detailed chemistry. The model incorporates a reduced mechanism that was created from a methyl decanoate/methyl-9-decenoate mechanism developed at the Lawrence Livermore National Laboratory. A combination of Directed Relation Graph, chemical lumping, and limited reaction rate tuning was used to reduce the detailed mechanism from 3299 species and 10806 reactions to 77 species and 209 reactions. The mechanism was validated against its detailed counterpart and predicted accurate ignition delay times over a range of relevant operating conditions. The mechanism was then combined with the ERC PRF mechanism to include n-heptane as an additional fuel component. The biodiesel mechanism was applied in KIVA using a discrete multi-component model with accurate physical properties for the five common components of real biodiesel fuel.
Journal Article

Comparison of Quantitative In-Cylinder Equivalence Ratio Measurements with CFD Predictions for a Light Duty Low Temperature Combustion Diesel Engine

2012-04-16
2012-01-0143
In a recent experimental study the in-cylinder spatial distribution of mixture equivalence ratio was quantified under non-combusting conditions by planar laser-induced fluorescence (PLIF) of a fuel tracer (toluene). The measurements were made in a single-cylinder, direct-injection, light-duty diesel engine at conditions matched to an early-injection low-temperature combustion mode. A fuel amount corresponding to a low load (3.0 bar indicated mean effective pressure) operating condition was introduced with a single injection at -23.6° ATDC. The data were acquired during the mixture preparation period from near the start of injection (-22.5° ATDC) until the crank angle where the start of high-temperature heat release normally occurs (-5° ATDC). In the present study the measured in-cylinder images are compared with a fully resolved three-dimensional CFD model, namely KIVA3V-RANS simulations.
Technical Paper

3-D Modeling of Diesel Engine Intake Flow, Combustion and Emissions

1991-09-01
911789
Manufacturers of heavy-duty diesel engines are facing increasingly stringent, emission standards. These standards have motivated new research efforts towards improving the performance of diesel engines. The objective of the present program is to develop a comprehensive analytical model of the diesel combustion process that can be used to explore the influence of design changes. This will enable industry to predict the effect of these changes on engine performance and emissions. A major benefit of the successful implementation of such models is that engine development time and costs would be reduced through their use. The computer model is based on the three-dimensional KIVA-II code, with state-of-the-art submodels for spray atomization, drop breakup / coalescence, multi-component fuel vaporization, spray/wall interaction, ignition and combustion, wall heat transfer, unburned HC and NOx formation, and soot and radiation.
Journal Article

A Zero-Dimensional Phenomenological Model for RCCI Combustion Using Reaction Kinetics

2014-04-01
2014-01-1074
Homogeneous low temperature combustion is believed to be a promising approach to resolve the conflict of goals between high efficiency and low exhaust emissions. Disadvantageously for this kind of combustion, the whole process depends on chemical kinetics and thus is hard to control. Reactivity controlled combustion can help to overcome this difficulty. In the so-called RCCI (reactivity controlled compression ignition) combustion concept a small amount of pilot diesel that is injected directly into the combustion chamber ignites a highly diluted gasoline-air mixture. As the gasoline does not ignite without the diesel, the pilot injection timing and the ratio between diesel and gasoline can be used to control the combustion process. A phenomenological multi-zone model to predict RCCI combustion has been developed and validated against experimental and 3D-CFD data. The model captures the main physics governing ignition and combustion.
Technical Paper

Experimental Assessment of Reynolds-Averaged Dissipation Modeling in Engine Flows

2007-09-16
2007-24-0046
The influence of the constant C3, which multiplies the mean flow divergence term in the model equation for the turbulent kinetic energy dissipation, is examined in a motored diesel engine for three different swirl ratios and three different spatial locations. Predicted temporal histories of turbulence energy and its dissipation are compared with experimentally-derived estimates. A “best-fit” value of C3 = 1.75, with an approximate uncertainty of ±0.3 is found to minimize the error between the model predictions and the experiments. Using this best-fit value, model length scale behavior corresponds well with that of measured velocity-correlation integral scales during compression. During expansion, the model scale grows too rapidly. Restriction of the model assessment to the expansion stroke suggests that C3 = 0.9 is more appropriate during this period.
Technical Paper

Assessment of Diesel Engine Size-Scaling Relationships

2007-04-16
2007-01-0127
Engine development is both time consuming and economically straining. Therefore, efforts are being made to optimize the research and development process for new engine technologies. The ability to apply information gained by studying an engine of one size/application to an engine of a completely different size/application would offer savings in both time and money in engine development. In this work, a computational study of diesel engine size-scaling relationships was performed to explore engine scaling parameters and the fundamental engine operating components that should be included in valid scaling arguments. Two scaling arguments were derived and tested: a simple, equal spray penetration scaling model and an extended, equal lift-off length scaling model. The simple scaling model is based on an equation for the conservation of mass and an equation for spray tip penetration developed by Hiroyasu et al. [1].
Technical Paper

Multidimensional Simulation of PCCI Combustion Using Gasoline and Dual-Fuel Direct Injection with Detailed Chemical Kinetics

2007-04-16
2007-01-0190
Homogeneous or partially premixed charge compression ignition combustion is considered to be an attractive alternative to traditional internal combustion engine operation because of its extremely low levels of pollutant emissions. However, since it is difficult to control the start of combustion timing, direct injection of fuel into the combustion chamber is often used for combustion phasing control, as well as charge preparation. In this paper, numerical simulations of compression ignition processes using gasoline fuel directly injected using a low pressure, hollow cone injector are presented. The multi-dimensional CFD code, KIVA3V, that incorporates various advanced sub-models and is coupled with CHEMKIN for modeling detailed chemistry, was used for the study. Simulation results of the spray behavior at various injection conditions were validated with available experimental data.
Technical Paper

An Evaluation of Common Rail, Hydraulically Intensified Diesel Fuel Injection System Concepts and Rate Shapes

1998-08-11
981930
Hydraulically intensified medium pressure common rail (MPCR) electronic fuel injection systems are an attractive concept for heavy-duty diesel engine applications. They offer excellent packaging flexibility and thorough engine management system integration. Two different concepts were evaluated in this study. They are different in how the pressure generation and injection events are related. One used a direct principle, where the high-pressure generation and injection events occur simultaneously producing a near square injection rate profile. Another concept was based on an indirect principle, where potential energy (pressure) is first stored inside a hydraulic accumulator, and then released during injection, as a subsequent event. A falling rate shape is typically produced in this case. A unit pump, where the hydraulic intensifier is separated from the injector by a high-pressure line, and a unit injector design are considered for both concepts.
Technical Paper

Numerical Predictions of Diesel Flame Lift-off Length and Soot Distributions under Low Temperature Combustion Conditions

2008-04-14
2008-01-1331
The lift-off length plays a significant role in spray combustion as it influences the air entrainment upstream of the lift-off location and hence the soot formation. Accurate prediction of lift-off length thus becomes a prerequisite for accurate soot prediction in lifted flames. In the present study, KIVA-3v coupled with CHEMKIN, as developed at the Engine Research Center (ERC), is used as the CFD model. Experimental data from the Sandia National Labs. is used for validating the model predictions of n-heptane lift-off lengths and soot formation details in a constant volume combustion chamber. It is seen that the model predictions, in terms of lift-off length and soot mass, agree well with the experimental results for low ambient density (14.8 kg/m3) cases with different EGR rates (21% O2 - 8% O2). However, for high density cases (30 kg/m3) with different EGR rates (15% O2 - 8% O2) disagreements were found.
Technical Paper

Study of Diesel Engine Size-Scaling Relationships Based on Turbulence and Chemistry Scales

2008-04-14
2008-01-0955
Engine design is a time consuming process in which many costly experimental tests are usually conducted. With increasing prediction ability of engine simulation tools, engine design aided by CFD software is being given more attention by both industry and academia. It is also of much interest to be able to use design information gained from an existing engine design of one size in the design of engines of other sizes to reduce design time and costs. Therefore it is important to study size-scaling relationships for engines over wide range of operating conditions. This paper presents CFD studies conducted for two production diesel engines - a light-duty GM-Fiat engine (0.5L displacement) and a heavy-duty Caterpillar engine (2.5L displacement). Previously developed scaling arguments, including an equal spray penetration scaling model and an extended, equal flame lift-off length scaling model were employed to explore the parametric scaling connections between the two engines.
X