Refine Your Search

Topic

Author

Affiliation

Search Results

Collection

Reliability and Robust Design in Automotive Engineering, 2010

2010-06-01
This technical paper collection contains 41 reliability and robust design papers. Topics covered include: axiomatic design; reliability testing, model validation and verification; reliability-based design optimization; assessment of reliability and robustness and reliability applications; design for Six Sigma; decision under uncertainty/uncertainty modeling; and reliability and robust design in automotive aero-thermal and fluid systems.
Video

Spotlight on Design Insight: Composite Materials: New Trends in Automotive Design

2015-05-08
“Spotlight on Design: Insight” features an in-depth look at the latest technology breakthroughs impacting mobility. Viewers are virtually taken to labs and research centers to learn how design engineers are enhancing product performance/reliability, reducing cost, improving quality, safety or environmental impact, and achieving regulatory compliance. Telematics, the convergence of telecommunications and informatics, uses electronic and computer technology built in to the vehicle to provide vehicle tracking, satellite navigation, wireless technology, and diagnostic information. In the episode “Diagnostics and Prognostics: Telematics Deep Dive” (8:09), an engineer from Delphi’s Telematics program discusses the advantages and challenges of telematics devices for the automotive industry, demonstrates the installation of an aftermarket telematics device, and shows how telematics can enhance diagnostics and preventative maintenance.
Video

Spotlight on Design: Composite Materials: Advanced Materials and Lightweighting

2015-04-15
“Spotlight on Design” features video interviews and case study segments, focusing on the latest technology breakthroughs. Viewers are virtually taken to labs and research centers to learn how design engineers are enhancing product performance/reliability, reducing cost, improving quality, safety or environmental impact, and achieving regulatory compliance. In the episode “Composite Materials: Advanced Materials and Lightweighting” (30:20), Molded Fiber Glass Companies, known for its deep involvement in the creative development of the molded fiberglass process for the Corvette, demonstrates the manufacturing of sheet molded composite for fiberglass parts. Tanom Motors introduces the Tanom Invader, a blend between an automobile and a motorcycle made exclusively with composite materials. Finally, Euro-Composites demonstrates the manufacturing of honeycomb core material made out of aramid paper and phenolic resin used in aircraft structures.
Video

A350XWB Fiber Placement Spars; From R&D Conception Phase to Serial Production

2012-03-23
At the end of 2006, two MTorres engineers visited the plant of Airbus UK in Filton receiving a new challenge: Find a more efficient way to manufacture Carbon Fiber Spars for the new A350 program. The range of possibilities were wide: manual infusion methods (RTM, RIM, RFI...), Automatic Taping & hot forming, or the new technology proposed, Fiberplacement or AFP. Two (2) options were considered: hot forming+ATL and AFP (both using prepeg technology.) The usage of a flat lay-up + hot forming technology was used in the only Airbus program that used carbon fiber for the wing manufacturing so far, the A400M. The expected greater complexity of A350 spar created doubts on the feasibility of using the above process, while the AFP technology, consisting of laying up directly on the final shape of the spar, also raised questions of technical feasibility, apart from the economic ?business case?, in case the productivity of the cell was not big enough. A ?Spar team?
Video

Automating AFP Tuning Using a Laser Sensor

2012-03-22
A significant step is achieved on the flight control actuation system toward the more electrical aircraft through the Airbus A380, A400M and the A350 development phase ongoing. The A380/A400M/A350 features a mixed flight control actuation power source distribution, associating electrically powered actuators with conventional FlyByWire hydraulic servocontrols. In the scope of the preparation of the future Airbus Aircraft, this paper presents the perspectives of the use of the EMA technologies for the flight control systems in the more electrical aircraft highlighting the main technical challenges need to treat: jamming susceptibility, ?on board? maintenance reduction, Operational reliability increase, power electronics and power management optimization, and regarding the environmental constraints, the predicted performances; the benefits associated to the optimized utilization of on-board power sources.
Video

Composite Predictive Engineering Studies - American Chemistry Council Plastics Division

2012-05-29
Since 2006 Oak Ridge National Labs (ORNL) and the Pacific Northwest National Labs (PNNL) have conducted research of injection molded long glass fiber thermoplastic parts funded by U.S. DOE. At DOE's request, ACC's Plastics Division Automotive Team and USCAR formed a steering committee for the National Labs, whose purpose was to provide industry perspective, parts materials and guidance in processing. This ACC affiliation enabled the plastics industry to identify additional key research requirements necessary to the success of long glass fiber injection molded materials and their use in the real world. Through further cooperative agreements with Autodesk Moldflow and University of Illinois, a new process model to predict both fiber orientation distribution and fiber length distribution is now available. Mechanical property predictive tools were developed and Moldflow is integrating these models into their software.
Collection

Reliability and Robust Design in Automotive Engineering, 2008

2010-09-23
The 59 papers in this technical paper collection detail reliability and robust design in automotive engineering. Topics covered include: reliability-based design optimization and robustness; military applications; decision under uncertainty/uncertainty modeling; axiomatic design; reliability testing and design of experiments; methods for assessment of reliability and robustness; reliability applications in the automotive and other industries; modeling validation and verification; and reliability and robust design in automotive aero-thermal and fluid systems.
Journal Article

Carbon Fiber/Epoxy Mold with Embedded Carbon Fiber Resistor Heater - Case Study

2018-04-07
Abstract The paper presents a complete description of the design and manufacturing of a Carbon Fiber/epoxy mold with an embedded Carbon Fiber resistor heater, and the mold performances in terms of its surface temperature distribution and thermal deformations resulting from the heating. The mold was designed for manufacturing aileron skins from Vacuum Bag Only prepreg cured at 135°C. The glass transition temperature of the used resin-hardener system was about 175°C. To ensure homogenous temperature of the mold working surface in the course of curing, the Carbon Fiber heater was embedded in a layer of a highly heat-conductive cristobalite/epoxy composite, forming the core of the mold shell. Because the cristobalite/epoxy composite displayed much higher thermal expansion than CF/epoxy did, thermal stresses could arise due to this discrepancy in the course of heating.
Collection

Reliability and Robust Design in Automotive Engineering, 2009

2010-09-23
The 40 papers in this technical paper collection focus on reliability and robust design in automotive engineering. Topics include: assessment of reliability and robustness and reliability applications; reliability-based design optimization and robustness; decision under uncertainty/uncertainty modeling; reliability testing and design of experiments; axiomatic design; military applications; design for six sigma; reliability and robust design in automotive aero-thermal and fluid systems; and model validation and verification.
Standard

Quality Management Systems – Requirements for Aviation, Space and Defense Organizations – Non-Deliverable Software (Supplement to 9100:2016)

2020-09-16
WIP
AS9115/2
Non-deliverable software is defined as software that facilitates the design, development, manufacture, inspection, test, acceptance, or calibration of a deliverable product, and is not generally delivered under a contract. This may include deliverable services software such as but not limited to maintenance procedures, order processing and/or various types of online technical support resources. As Industry efforts increase to improve product quality and reliability and reduce production costs, use of computer software programs for automation, control and monitoring of production processes and product test, acceptance and calibration is also increasing. It is therefore vital to assure these software programs are controlled to ensure product conformity requirements are properly supported.
X