Refine Your Search

Topic

Search Results

Standard

Capacitive Fuel Gauging System Accuracies

2021-04-23
CURRENT
AIR1184B
This report is intended to identify the various errors typically encountered in capacitance fuel quantity measurement systems. In addition to identification of error sources, it describes the basic factors which cause the errors. When coupled with appraisals of the relative costs of minimizing the errors, this knowledge will furnish a tool with which to optimize gauging system accuracy, and thus, to obtain the optimum overall system within the constraints imposed by both design and budgetary considerations. Since the subject of fuel measurement accuracy using capacitance based sensing is quite complex, no attempt is made herein to present a fully-comprehensive evaluation of all factors affecting gauging system accuracy. Rather, the major contributors to gauging system inaccuracy are discussed and emphasis is given to simplicity and clarity, somewhat at the expense of completeness. An overview of capacitive fuel gauging operation can be found in AIR5691.
Standard

CAPACITIVE FUEL GAUGING SYSTEM ACCURACIES

2007-12-04
HISTORICAL
AIR1184A
This report is intended to identify the necessary analytical tools to enable making value judgments for minimizing the various errors typically encountered in capacitance systems. Thus, in addition to identification of error sources, it describes the basic factors which cause the errors. When coupled with appraisals of the relative costs of minimizing the errors, this knowledge will furnish a tool with which to optimize gauging system accuracy, and thus, to obtain the optimum overall system within the constraints imposed by both design and budgetary considerations. Since the subject of capacitance accuracy is quite complex, no attempt is made herein to present a fully-comprehensive evaluation of all factors affecting gauging system accuracy. Rather, the major contributors to gauging system inaccuracy are discussed and emphasis is given to simplicity and clarity, somewhat at the expense of completeness. An overview of Capacitive Fuel Gauging operation is provided in the Appendix.
Standard

Nozzles and Ports - Gravity Fueling Interface Standard for Civil Aircraft

1997-08-01
HISTORICAL
AS1852B
This SAE Aerospace Standard (AS) defines the maximum allowable free opening dimensions for airframe fueling ports on civil aircraft that require the exclusive use of gasoline as an engine fuel and the minimum free opening dimensions for airframe fueling ports on civil aircraft that operate with turbine fuels as the primary fuel type. In addition, this document defines the minimum fuel nozzle tip dimensions for turbine fuel ground service equipment and the maximum fuel nozzle tip diameter for gasoline ground service equipment.
Standard

Nozzles and Ports – Gravity Fueling Interface Standards for Civil Aircraft

2012-01-03
CURRENT
AS1852D
This SAE Aerospace Standard (AS) defines the maximum allowable free opening dimensions for airframe fueling ports on civil aircraft that require the exclusive use of gasoline as an engine fuel, and the minimum free opening dimensions for airframe fueling ports on civil aircraft that operate with turbine fuels as the primary fuel type and with gasoline as the emergency fuel type. This SAE Aerospace Standard (AS) also defines the features and dimensions for airframe refueling ports on civil aircraft that require the exclusive use of turbine fuel as an engine fuel. In addition, this document defines the minimum fuel nozzle spout dimensions for turbine fuel ground service equipment, and the maximum fuel nozzle spout diameter for gasoline ground service equipment.
Standard

Nozzles and Ports - Gravity Fueling Interface Standard for Civil Aircraft

2006-03-24
HISTORICAL
AS1852C
This SAE Aerospace Standard (AS) defines the maximum allowable free opening dimensions for airframe fueling ports on civil aircraft that require the exclusive use of gasoline as an engine fuel, and the minimum free opening dimensions for airframe fueling ports on civil aircraft that operate with turbine fuels as the primary fuel type and with gasoline as the emergency fuel type. This SAE Aerospace Standard (AS) also defines the features and dimensions for airframe refueling ports on civil aircraft that require the exclusive use of turbine fuel as an engine fuel. In addition, this document defines the minimum fuel nozzle spout dimensions for turbine fuel ground service equipment, and the maximum fuel nozzle spout diameter for gasoline ground service equipment.
Standard

Fuel Level Point Sensing

2020-11-30
CURRENT
AIR6325
This report is intended to identify the various existing technologies used for a fuel level sensing system. In addition to sensing technologies, it describes the basic architecture of fuel level sensing systems and their association with fuel gauging system to increase integrity of fuel measurement and management. As the fuel level sensing system is generally based on electrical components within fuel tanks, a specific focus is made on fuel tank explosion safety protection. An overview of the capacitive fuel gauging operation can be found in AIR5691.
Standard

Electrical Bonding of Aircraft Fuel Systems

2022-10-04
CURRENT
AIR5128A
This SAE Aerospace Information Report (AIR) is limited to the subject of aircraft fuel systems and the questions concerning the requirements for electrical bonding of the various components of the system as related to Static Electric Charges, Fault Current, Electromagnetic Interference (EMI) and Lightning Strikes (Direct and Indirect Effects). This AIR contains engineering guidelines for the design, installation, testing (measurement) and inspection of electrical bonds.
Standard

ELECTRICAL BONDING OF AIRCRAFT FUEL SYSTEM PLUMBING SYSTEMS

2007-12-04
HISTORICAL
AIR5128
This SAE Aerospace Information Report (AIR) is limited to the subject of aircraft fuel system plumbing systems and the questions concerning the requirements for electrical bonding of the various components of the system as related to Static Electric Charges, Electromagnectic Interference (EMI) and Lightning Strikes (Direct and Indirect Effects)
Standard

Guidance for the Design and Installation of Fuel Quantity Indicating Systems (FQIS)

2022-10-07
CURRENT
AIR5691B
This document is applicable to commercial and military aircraft fuel quantity indication systems. It is intended to give guidance for system design and installation. It describes key areas to be considered in the design of a modern fuel system and builds upon experiences gained in the industry in the last 10 years.
Standard

Guidance for the Design and Installation of Fuel Quantity Indicating Systems

2017-05-18
HISTORICAL
AIR5691A
This document is applicable to commercial and military aircraft fuel quantity indication systems. It is intended to give guidance for system design and installation. It describes key areas to be considered in the design of a modern fuel system, and builds upon experiences gained in the industry in the last 10 years.
Standard

Guidance for the Design and Installation of Fuel Quantity Indicating Systems

2013-01-04
HISTORICAL
AIR5691
This document is applicable to commercial and military aircraft fuel quantity indication systems. It is intended to give guidance for system design and installation. It describes key areas to be considered in the design of a modern fuel system, and builds upon experiences gained in the industry in the last 10 years.
Standard

FIRE TESTING OF FLUID HANDLING COMPONENTS FOR AIRCRAFT ENGINES AND AIRCRAFT ENGINE INSTALLATIONS

1996-08-01
HISTORICAL
AS4273
This document establishes requirements, test procedures, and acceptance criteria for the fire testing of fluid handling components and materials used in aircraft fluid systems. It is applicable to fluid handling components other than those prescribed by AS1055 (e.g., hoses, tube assemblies, coils, fittings). It also is applicable to materials, wiring, and components such as reservoirs, valves, gearboxes, pumps, filter assemblies, accumulators, fluid-cooled electrical/electronic components, in-flight fluid system instrumentation, hydromechanical controls, actuators, heat exchangers, and manifolds. These components may be used in fuel, lubrication, hydraulic, or pneumatic systems.
Standard

FLUID SYSTEM COMPONENT SPECIFICATION PREPARATION CRITERIA

1983-06-01
HISTORICAL
AIR1082A
The "Scope" section may be a very brief statement describing the coverage of the specification for a simple device, or it may require a long description of limiting parameters for a more complex device or system having a complicated interface definition.
X