Refine Your Search

Topic

Search Results

Standard

Capacitive Fuel Gauging System Accuracies

2021-04-23
CURRENT
AIR1184B
This report is intended to identify the various errors typically encountered in capacitance fuel quantity measurement systems. In addition to identification of error sources, it describes the basic factors which cause the errors. When coupled with appraisals of the relative costs of minimizing the errors, this knowledge will furnish a tool with which to optimize gauging system accuracy, and thus, to obtain the optimum overall system within the constraints imposed by both design and budgetary considerations. Since the subject of fuel measurement accuracy using capacitance based sensing is quite complex, no attempt is made herein to present a fully-comprehensive evaluation of all factors affecting gauging system accuracy. Rather, the major contributors to gauging system inaccuracy are discussed and emphasis is given to simplicity and clarity, somewhat at the expense of completeness. An overview of capacitive fuel gauging operation can be found in AIR5691.
Standard

CAPACITIVE FUEL GAUGING SYSTEM ACCURACIES

2007-12-04
HISTORICAL
AIR1184A
This report is intended to identify the necessary analytical tools to enable making value judgments for minimizing the various errors typically encountered in capacitance systems. Thus, in addition to identification of error sources, it describes the basic factors which cause the errors. When coupled with appraisals of the relative costs of minimizing the errors, this knowledge will furnish a tool with which to optimize gauging system accuracy, and thus, to obtain the optimum overall system within the constraints imposed by both design and budgetary considerations. Since the subject of capacitance accuracy is quite complex, no attempt is made herein to present a fully-comprehensive evaluation of all factors affecting gauging system accuracy. Rather, the major contributors to gauging system inaccuracy are discussed and emphasis is given to simplicity and clarity, somewhat at the expense of completeness. An overview of Capacitive Fuel Gauging operation is provided in the Appendix.
Standard

AEROSPACE FUEL SYSTEM SPECIFICATIONS AND STANDARDS

1976-03-01
HISTORICAL
AIR1408
This report lists military and industry specifications and standards which are commonly used in aerospace gas turbine fuel systems. It is intended as a supplement to specifications MIL-F-3863, MIL-F-17874 and MIL-F-8615. Revisions and amendments which are current for these specifications and standards are not listed.
Standard

Fuel Level Point Sensing

2020-11-30
CURRENT
AIR6325
This report is intended to identify the various existing technologies used for a fuel level sensing system. In addition to sensing technologies, it describes the basic architecture of fuel level sensing systems and their association with fuel gauging system to increase integrity of fuel measurement and management. As the fuel level sensing system is generally based on electrical components within fuel tanks, a specific focus is made on fuel tank explosion safety protection. An overview of the capacitive fuel gauging operation can be found in AIR5691.
Standard

Aircraft Fuel System Design Guidelines

2019-12-05
CURRENT
AIR7975
This document describes the major design drivers and considerations when designing a fuel system for a large commercial aircraft. It discusses the design at a system/aircraft level, and is not intended as a design manual for individual system components, though it does refer out to other SAE specifications where more detail on specific components and sub-systems is given. It does include examples of a number of calculations associated with sizing of fuel systems, based on those given in NAV-AIR-06-5-504, as well as an appendix summarizing basic fluid mechanical equations which are key for fuel system design. It is acknowledged that most of these calculations would today be performed by modelling tools, rather than by hand, but it is considered important for the designer to understand the principles. It is intended that later issues of this document will include appendices which give specific considerations for military aircraft, smaller commercial aircraft, and rotorcraft.
Standard

Electrical Bonding of Aircraft Fuel Systems

2022-10-04
CURRENT
AIR5128A
This SAE Aerospace Information Report (AIR) is limited to the subject of aircraft fuel systems and the questions concerning the requirements for electrical bonding of the various components of the system as related to Static Electric Charges, Fault Current, Electromagnetic Interference (EMI) and Lightning Strikes (Direct and Indirect Effects). This AIR contains engineering guidelines for the design, installation, testing (measurement) and inspection of electrical bonds.
Standard

ELECTRICAL BONDING OF AIRCRAFT FUEL SYSTEM PLUMBING SYSTEMS

2007-12-04
HISTORICAL
AIR5128
This SAE Aerospace Information Report (AIR) is limited to the subject of aircraft fuel system plumbing systems and the questions concerning the requirements for electrical bonding of the various components of the system as related to Static Electric Charges, Electromagnectic Interference (EMI) and Lightning Strikes (Direct and Indirect Effects)
Standard

Guidance for the Design and Installation of Fuel Quantity Indicating Systems (FQIS)

2022-10-07
CURRENT
AIR5691B
This document is applicable to commercial and military aircraft fuel quantity indication systems. It is intended to give guidance for system design and installation. It describes key areas to be considered in the design of a modern fuel system and builds upon experiences gained in the industry in the last 10 years.
Standard

Guidance for the Design and Installation of Fuel Quantity Indicating Systems

2017-05-18
HISTORICAL
AIR5691A
This document is applicable to commercial and military aircraft fuel quantity indication systems. It is intended to give guidance for system design and installation. It describes key areas to be considered in the design of a modern fuel system, and builds upon experiences gained in the industry in the last 10 years.
Standard

Guidance for the Design and Installation of Fuel Quantity Indicating Systems

2013-01-04
HISTORICAL
AIR5691
This document is applicable to commercial and military aircraft fuel quantity indication systems. It is intended to give guidance for system design and installation. It describes key areas to be considered in the design of a modern fuel system, and builds upon experiences gained in the industry in the last 10 years.
Standard

FIRE TESTING OF FLUID HANDLING COMPONENTS FOR AIRCRAFT ENGINES AND AIRCRAFT ENGINE INSTALLATIONS

1996-08-01
HISTORICAL
AS4273
This document establishes requirements, test procedures, and acceptance criteria for the fire testing of fluid handling components and materials used in aircraft fluid systems. It is applicable to fluid handling components other than those prescribed by AS1055 (e.g., hoses, tube assemblies, coils, fittings). It also is applicable to materials, wiring, and components such as reservoirs, valves, gearboxes, pumps, filter assemblies, accumulators, fluid-cooled electrical/electronic components, in-flight fluid system instrumentation, hydromechanical controls, actuators, heat exchangers, and manifolds. These components may be used in fuel, lubrication, hydraulic, or pneumatic systems.
Standard

Considerations on Ice Formation in Aircraft and Engine Fuel Systems

2020-09-18
CURRENT
AIR790D
Ice formation in aircraft fuel systems results from the presence of dissolved and undissolved water in the fuel. Dissolved water or water in solution with hydrocarbon fuels constitutes a relatively small part of the total water potential in a particular system with the quantity dissolved being primarily dependent on the fuel temperature and the water solubility characteristics of the fuel. One condition of undissolved water is entrained water, such as water particles suspended in the fuel as a result of mechanical agitation of free water or conversion of dissolved water through temperature reduction. This can be considered as analogous to an emulsion state. Another condition of undissolved water is free water which may be introduced as a result of refueling or the settling of entrained water which collects at the bottom of a fuel tank in easily detectable quantities separated by a continuous interface from the fuel above.
Standard

Considerations on Ice Formation in Aircraft Fuel Systems

2006-08-24
HISTORICAL
AIR790C
Ice formation in aircraft fuel systems results from the presence of dissolved and undissolved water in the fuel. Dissolved water or water in solution with hydrocarbon fuels constitutes a relatively small part of the total water potential in a particular system with the quantity dissolved being primarily dependent on the fuel temperature and the water solubility characteristics of the fuel. One condition of undissolved water is entrained water such as water particles suspended in the fuel as a result of mechanical agitation of free water or conversion of dissolved water through temperature reduction. Another condition of undissolved water is free water which may be introduced as a result of refueling or the settling of entrained water which collects at the bottom of a fuel tank in easily detectable quantities separated by a continuous interface from the fuel above. Water may also be introduced as a result of condensation from air entering a fuel tank through the vent system.
X