Refine Your Search

Search Results

Viewing 1 to 2 of 2
Journal Article

Estimation of Mass and Inertia Properties of Human Body Segments for Physics-based Human Modeling and Simulation Applications

2009-06-09
2009-01-2301
This paper describes an effective integrated method for estimation of subject-specific mass, inertia tensor, and center of mass of individual body segments of a digital avatar for use with physics-based digital human modeling simulation environment. One of the main goals of digital human modeling and simulation environments is that a user should be able to change the avatar (from male to female to a child) at any given time. The user should also be able to change the various link dimensions, like lengths of upper and lower arms, lengths of upper and lower legs, etc. These customizations in digital avatar's geometry change the kinematic and dynamic properties of various segments of its body. Hence, the mass and center of mass/inertia data of the segments must be updated before simulating physics-based realistic motions. Most of the current methods use mass and inertia properties calculated from a set of regression equations based on average of some population.
Technical Paper

Development of a Zone Differentiation Tool for Visualization of Postural Comfort

2008-04-14
2008-01-0772
Over the past several years, significant advances have been made in the area of posture prediction. However, to make simulations more useful for vehicle design, additional unique tools are needed. This research focuses on the development of one such tool, called zone differentiation. This new tool allows user to visualize not only the complete reach envelope but also the interior comfort levels of the envelope. It uses a color map to display the relative values of various performance measures (i.e. comfort) at points surrounding an avatar. This is done by leveraging an optimization-based approach to posture prediction. Using this tool, a vehicle designer can visually display the impact that the placement of a control (switch, button, etc.) has on a driver's postural comfort. The comfort values are displayed in a manner similar to how a finite element analysis (FEA) programs display stress and strain results. The development of this tool requires two main components.
X