Refine Your Search

Topic

Search Results

Journal Article

Using LES for Predicting High Performance Car Airbox Flow

2009-04-20
2009-01-1151
Aerodynamic had played a primary role in high performance car since the late 1960s, when introduction of the first inverted wings appeared in some formulas. Race car aerodynamic optimisation is one of the most important reason behind the car performance. Moreover, for high performance car using naturally aspired engine, car aerodynamic has a strong influence also on engine performance by its influence on the engine airbox. To improve engine performance, a detailed fluid dynamic analysis of the car/airbox interaction is highly recommended. To design an airbox geometry, a wide range of aspects must be considered because its geometry influences both car chassis design and whole car aerodynamic efficiency. To study the unsteady fluid dynamic phenomena inside an airbox, numerical approach could be considered as the best way to reach a complete integration between chassis, car aerodynamic design, and airbox design.
Technical Paper

Assessment of a Numerical Methodology for Large Eddy Simulation of ICE Wall Bounded Non-Reactive Flows

2007-10-29
2007-01-4145
The increasing of the overall engine performance requires the investigation of the unsteady engine phenomena affecting intake air flow and the air-fuel mixing process. The “standard” RANS methodology often doesn't allow one to achieve a qualitative and quantitative accurate prediction of these phenomena. The aim of this paper is to show the potential and the limits of LES numerical technique in the simulation of actual IC engine flows and to assess the influence of some basic parameters on the LES simulation results. The paper introduces the use of a merit parameter suggested by Pope for evaluating the quality of the LES solution. The CFD code used is Fluent v6.2 and two basic test cases have been simulated. The first one is the flow over a backward facing step in order to perform a preliminary parametric numerical analysis. A one-equation dynamic subgrid-scales turbulence model is used.
Technical Paper

Thermo-mechanical analysis of an engine head by means of integrated CFD and FEM

2007-09-16
2007-24-0067
A 2200 cc engine head for marine applications has been analysed and optimized by means of both fluid-dynamic and thermo-structural simulations. First, the fluid distribution within the cooling jacket has been deeply investigated, in order to point out critical aspects of the current jacket layout and propose modified gaskets aiming at modifying the coolant path and increasing the cooling performance. A new generation polyhedral grid has been employed to combine high resolution surface spacing, computational demand, and numerical stability of the CFD simulations. Different turbulence models and near-wall approaches have been tested in order to accurately predict the boundary layer behaviour, which is fundamental for the subsequent thermal analysis. Comparisons have been carried out between the different gasket layouts in terms of both cylinder to cylinder flow balancing and cooling effectiveness in the critical regions of the engine head.
Technical Paper

CFD Analysis of Injection Timing and Injector Geometry Influences on Mixture Preparation at Idle in a PFI Motorcycle Engine

2007-09-16
2007-24-0041
The optimization of the air-fuel mixture formation plays a very important role in order to reduce the total amount of emissions from an SI engine. To comply with the EURO5 emission restrictions is necessary to understand the influence of injection timing (with respect to engine load) and injector geometry on the air-fuel dynamic interaction. The aim of this paper is to define a CFD methodology for the simulation of a PFI engine. The goals of this analysis are the evaluation of the injector geometry and injection timing influences on the air-fuel mixture preparation and so on the equivalence ratio distribution inside the combustion chamber. Preliminary assessments of the wall-film and droplet-wall interaction sub models have been carried out in order to validate the methodology [1].
Technical Paper

CFD Analysis of Injection Timing Influence on Mixture Preparation in a PFI Motorcycle Engine

2006-11-13
2006-32-0022
The efficiency of engine operations, i.e. cold start, transient response and operating at idle, depends on the capability of the injection fuel system to promote a homogeneous mixture formation through an efficient interaction with engine fluid dynamics and geometry. The paper presents the development and the application of a methodology for running a CFD PFI engine simulation. A preliminary assessment of the wall-film and droplet-wall interaction sub models has been carried out in order to validate the methodology. Then a three-step numerical procedure has been adopted. The first two steps are aimed to properly initialize the secondary breakup model depending on the type of injector installed on board in order to achieve accurate predictions of spray characteristics.
Technical Paper

Development of an Ignition Model for S.I. Engines Simulation

2007-04-16
2007-01-0148
An ignition model based on Lagrangian approach was set-up. A lump model for the electrical circuit of the spark plug is used to compute breakdown and glow energy. At the end of shock wave and very first plasma expansion, a spherical kernel is deposited inside the gas flow at spark plug location. A simple model allows one to compute initial flame kernel radius and temperature based on physical mixture properties and spark plug characteristics. The sphere surface of the kernel is discretized by triangular elements which move radially according to a lagrangian approach. Expansion velocity is computed accounting for both heat conduction effect at the highest temperatures and thermodynamic energy balance at relatively lower temperatures. Turbulence effects and thermodynamic properties of the air-fuel mixture are accounted for. Restrikes are possible depending on gas flow velocity and mixture quality at spark location.
Technical Paper

Multidimensional Cycle Analysis on a Novel 2-Stroke HSDI Diesel Engine

2007-04-16
2007-01-0161
The Department of Mechanical and Civil Engineering (DIMeC) of the University of Modena and Reggio Emilia is developing a new type of small capacity HSDI 2-Stroke Diesel engine, featuring a specifically designed combustion system. The present paper is focused on the analysis of the scavenging process, carried out by means of 3D-CFD simulations, supported by 1D engine cycle calculations. First, a characterization of the flow through the ports and within the cylinder is performed under conventional operating conditions. Then, a complete 3D cycle simulation, including combustion, is carried out at four actual operating conditions, at full load. The CFD results provide fundamental information to address the development of the scavenging system, as well as to calibrate a comprehensive 1D engine model.
Technical Paper

LES Simulation of ICE Non-Reactive Flows in Fixed Grids

2008-04-14
2008-01-0959
The increasing of the overall engine performance requires the investigation of the unsteady engine phenomena affecting intake air flow and the air-fuel mixing process. The “standard” RANS methodology often doesn't allow one to achieve a qualitative and quantitative accurate prediction of these phenomena. The aim of this paper is to show the potential and the limits of LES numerical technique in the simulation of actual IC engine non reactive flows in fixed grids. The paper introduces the use of a merit parameter suggested by Pope for evaluating the quality of the LES turbulence resolution [14]. A basic engine steady flow bench case has been simulated. The CFD code used is Fluent v6.2. The numerical results of a previous LES basic numerical analysis were used for setting up calculations. Large Eddy Simulations using the dynamic one-equation model and a simulation with the WALE sgs model [25] have been performed.
Technical Paper

A New Decoupled CFD and FEM Methodology for the Fatigue Strength Assessment of an Engine Head

2008-04-14
2008-01-0972
A 2200 cc engine head for marine applications has been analysed and optimized by means of decoupled CFD and FEM simulations in order to assess the fatigue strength of the component. The fluid distribution within the cooling jacket was extensively analysed and improved in previous works, in order to enhance the performance of the coolant galleries. A simplified methodology was then proposed in order to estimate the thermo-mechanical behaviour of the head under actual engine operation [1, 2]. As a consequence of the many complex phenomena involved, an improved approach is presented in this paper, capable of a better characterization of the fatigue strength of the engine head under both high-cycle and low-cycle fatigue loadings. The improved methodology is once again based on a decoupled CFD and FEM analysis, with relevant improvements added to both simulation realms.
Technical Paper

Experimental and Numerical Investigation of Conjugate Heat Transfer in a HSDI Diesel Engine Water Cooling Jacket

2009-04-20
2009-01-0703
The paper presents a combined experimental and numerical program directed at improving the accuracy of conjugate heat transfer CFD simulations of engine water cooling jackets. As a first step in the process, a comparison between experimental measurements from a test facility at Villanova University and CFD numerical predictions by at the University of Modena is reported. The experimental test section consists of a horizontal aluminium channel heated electrically and supplied with a constant volumetric flow rate. The operating fluid is a binary 50/50 mixture by volume of ethylene-glycol and water, in order to reproduce a situation as close as possible to actual engine cooling system operations. Temperatures are measured along the channel at several axial locations. On the CFD side, an extensive program reproducing the experiments is carried out in order to assess the predictive capabilities of some of the most commonly used eddy viscosity models available in literature.
Technical Paper

CFD Investigation of Wall Wetting in a GDI Engine under Low Temperature Cranking Operations

2009-04-20
2009-01-0704
The paper reports a numerical activity on the investigation of the spray evolution within the combustion chamber of an automotive DISI engine under low-temperature cranking operations. In view of the high injected fuel amount and the strongly reduced fuel vaporization at cold cranking, wall wetting becomes a critical issue. Under such conditions, fuel deposits around the spark plug region can affect the ignition process, and even prevent engine start-up. In fact, due to the low injection pressure at engine start-up, the fuel shows almost negligible atomization and breakup, and the spray structure at the swirl-type injector nozzle is characterized by a single column of liquid fuel, strongly limiting the subsequent vaporization and enhancing the fuel-wall interaction. In order to properly investigate and understand the many involved phenomena, experimental visualization of the full injection process by means of an optically accessible engine would be a very useful tool.
Technical Paper

CFD-3D Multi-Cycle Analysis on a New 2-Stroke HSDI Diesel Engine

2009-04-20
2009-01-0707
The paper describes a CFD multidimensional and multicycle engine analysis applied to a novel 2-Stroke HSDI Diesel engine, under development since a few years at the University of Modena and Reggio Emilia. In particular, six operating conditions are considered, two of them at full load and four at partial. The simulation tool is STAR-CD, a commercial software extensively applied by the authors to HSDI Diesel engines. Furthermore, an experimental calibration of the combustion model has been performed and reported in this paper, carrying out CFD simulations on a reference Four Stroke HSDI Diesel engine. As expected, in the multi-cycle analysis a wide dependence of pollutants on trapped charge composition has been found. Much less relevant is the cycle-by-cycle variation in terms of performance parameters, such as trapped mass, IMEP, combustion efficiency, etc.
Technical Paper

Racing Car Airbox Performance Prediction Using LES Simulation Approach

2008-10-06
2008-01-2388
This paper deals with the assessment of the use of LES simulation technique on a real airbox geometry designed for a high-performance engine. Large Eddy Simulation is a promising technique to yield a CFD tool able to predict flow unsteadiness: in LES modeling only a small part of the energy spectrum is modeled while the large scales of motion (correlated with the energy transport phenomena) are directly resolved. Given this observation, LES model becomes a very attractive tool for the fluid dynamic analysis of components characterized by a strong dynamic flow behavior like an airbox geometry. The airbox simulations were performed by Fluent v6.3 CFD code and the Wall Adaptive Local Eddy-Viscosity (WALE) sub-grid (sgs) stress model was used. A bounded second order central differencing scheme (BCD) was adopted and a discussion of the kinetic energy conservation attitude of this scheme was performed.
Technical Paper

Analysis of Air/Cavitation Interaction Inside a Rotary Vane Pump for Application on Heavy Duty Engine

2009-06-15
2009-01-1943
This paper deals with a CFD three-dimensional multiphase simulation of rotary vane pump. The paper presents a suitable methodology for the investigation of the cavitation effects and/or incondensable gases. All the 3D simulations were performed by using Fluent v12 (Beta version). A moving mesh methodology was defined to reproduce the change-in-time shape of the internal pump volumes. In particular, the pump analysis was focused on the generation, and evolution of the cavitation phenomena inside the machine to identify the locations where this phenomena could occur. Moreover, the influence of incondensable gas dissolved inside the operator fluid on both pump performance and cavitation evolution was evaluated. Significant results were obtained about the analysis of incondensable gas influence on the cavitation evolution showing that, today, CFD analysis can provide detailed information on such harmful phenomena which can not be achieved by experiments.
Technical Paper

Multi-dimensional modeling of the air/fuel mixture formation process in a PFI engine for motorcycle applications

2009-09-13
2009-24-0015
The preparation of the air-fuel mixture represents one of the most critical tasks in the definition of a clean and efficient SI engine. Therefore it becomes necessary to consolidate the numerical methods which are able to describe such a complex physical process. Within this context, the authors developed a CFD methodology into an open-source code to investigate the air-fuel mixture formation process in PFI engines. Attention is focused on moving mesh algorithms, Lagrangian spray modeling and spray-wall interaction modeling. Since moving grids are involved and the mesh quality during motion strongly influences the computed in-cylinder flow-field, a FEM-based automatic mesh motion solver combined with topological changes was adopted to preserve the grid quality in presence of high boundary deformations like the interaction between the piston bowl and the valves during the valve-overlap period.
Technical Paper

Development And Validation of a Boundary Layer Control System to Increase Intake Port Steady Permeability

2004-03-08
2004-01-0111
Engine permeability, which is commonly known to exert a strong influence on engine performances, is usually experimentally addressed by means of the definition of a global parameter, the steady discharge coefficient. Nevertheless, the use of such a parameter to describe valve-port assembly behaviour appears sometimes to be insufficient to determine port fluidynamic behaviour, due to the simultaneous concurrency of complex mechanisms, such as mean flow distortions and boundary layer detachments. CFD simulation appears therefore to be a fundamental tool to fully understand port fluidynamic behaviour. In the present paper, two engine intake port assemblies are investigated by using the STAR-CD CFD code, showing a strongly different behaviour from the point of view of secondary detached flows generation across the valve.
Technical Paper

Advanced Modelling of a New Diesel Fast Solenoid Injector and Comparison with Experiments

2004-03-08
2004-01-0019
Upcoming Euro 4 and Euro 5 emission standards are increasing efforts on injection system developments in order to improve mixture quality and combustion efficiency. The target features of advanced injection systems are related to their capability of operating multiple injection with a precise control of the amount of injected fuel, low cycle-by-cycle variability and life drift, within flexible strategies. In order to accomplish this task, injector performance must be optimised by acting on: optimisation of electronic, driving circuit, detailed investigation of different nozzle hole diameter configurations, assessment of the influence of manufacturing errors on hole diameter and inlet rounding on injector performance. The paper will focus on the use of an integrated lump-1D/3D methodology for the design of advanced new fast solenoid Common Rail (C.R.) injector for high speed diesel engines. A lump-model built up in AMESim® environment was used to address the injector design.
Technical Paper

Turbulence Modelling in CFD Simulation of ICE intake flows

2001-09-23
2001-24-0049
The paper is focused on the influence of the eddy viscosity turbulence models (EVM) in CFD three-dimensional simulations of steady turbulent engine intake flows in order to assess their reliability in predicting the discharge coefficient. Results have been analysed by means of the comparison with experimental measurements at the steady flow bench. High Reynolds linear and non linear and RNG k-ɛ models have been used for simulation, revealing the strong influence of both the constitutive relation and the ɛ-equation formulation on the obtained results, while limits in the applicability of more sophisticated near-wall approaches are briefly discussed in the paper. Due to the extreme complexity of typical ICE flows and geometries, the analysis of the behaviour of EVM turbulence models has been subsequently applied to a test-case available in literature, i.e. a high-Reynolds compressible flow over a inclined backward facing step (BFS).
Technical Paper

Advanced Modeling of Common Rail Injector Dynamics and Comparison with Experiments

2003-03-03
2003-01-0006
The aim of this work is to set up a methodology for simulating Common Rail high-pressure injectors based on coupling a lump-model with CFD two-phase multi-dimensional computations. The unit simulated is the Bosch injector. The injector lump-model resulted in the definition of the three sub-models for hydraulics, mechanics and electro-magnetics. The second-order differential governing equations have been solved in Matlab/Simulink environment and are properly coupled together with the one-dimensional partial differential equations that describe the unsteady pipe flow. A detailed library of thermo-mechanical properties for ISO-4113 oil and diesel fuel is included. Cavitation effects on discharge coefficient in the main orifices were accounted for by using results from CFD steady two-phase flow simulations. The evaluation of the model capability was assessed by using detailed experiments carried out at different practical injector operating conditions.
Technical Paper

A Methodology for In-Cylinder Flow Field Evaluation in a Low Stroke-to-Bore SI Engine

2002-03-04
2002-01-1119
This paper presents a methodology for the 3D CFD simulation of the intake and compression processes of four stroke internal combustion engines.The main feature of this approach is to provide very accurate initial conditions by means of a cost-effective initialization step. Calculations are applied to a low stroke-to-bore SI engine, operated at full load and maximum engine speed. It is demonstrated that initial conditions for this kind of engines have an important influence on flow field development, particularly in terms of mean velocities close to the firing TDC. Simulation results are used to discuss the choice of a set of parameters for the flow field characterization of low stroke-to-bore engines, as well as to provide an insight into the flow patterns during the overlapping period.
X