Refine Your Search

Topic

Search Results

Standard

Passenger and Light Truck Tire Traction Device Profile Determination and Classification

2000-09-12
HISTORICAL
J1232_200009
The purpose of this SAE Recommended Practice is to set up a guide as to body, frame, and wheelhouse clearances required to accommodate tire traction devices (e.g., tire chains), and to provide a means of classifying these devices according to their maximum profile. In addition, it enables the vehicle manufacturer to specify the proper traction devices for each vehicle. This report is intended to apply to passenger cars and light trucks up to 4535 kg (10 001 lb) GVW. This document is not to be construed as approving traction device operation at conditions exceeding manufacturer's specifications, although short periods of such operations may be required for test purposes.
Standard

Passenger and Light Truck Tire Traction Device Profile Determination and Classification

2020-03-11
CURRENT
J1232_202003
The purpose of this SAE Recommended Practice is to set up a guide as to body, frame, and wheelhouse clearances required to accommodate tire traction devices (e.g., tire chains), and to provide a means of classifying these devices according to their maximum profile. In addition, it enables the vehicle manufacturer to specify the proper traction devices for each vehicle. This report is intended to apply to passenger cars and light trucks up to 4535 kg (10 001 lb) GVW. This document is not to be construed as approving traction device operation at conditions exceeding manufacturer's specifications, although short periods of such operations may be required for test purposes.
Standard

Passenger Car and Light Truck Tire Dynamic Driving Traction in Snow

2001-04-12
CURRENT
J1466_200102
This SAE Recommended Practice defines the best known techniques for evaluating dynamic passenger car and light truck tire driving traction in snow. There are many snow conditions which a typical driver will encounter that are not specifically addressed in this Recommended Practice. Dynamic driving traction in this Recommended Practice is under a narrow, controlled range of conditions of temperature, snow compaction and depth (commonly called the 'Test Window') to minimize test variability. Tire rankings may differ on other types of snow and ice conditions.
Standard

PASSENGER CAR AND LIGHT TRUCK TIRE DYNAMIC DRIVING TRACTION IN SNOW

1985-10-01
HISTORICAL
J1466_198510
This SAE Recommended Practice defines the best known techniques for evaluating dynamic passenger car and light truck tire driving traction in snow. There are many snow conditions which a typical driver will encounter that are not specifically addressed in this Recommended Practice. Dynamic driving traction in this Recommended Practice is under a narrow, controlled range of conditions of temperature, snow compaction and depth (commonly called the “Test Window”) to minimize test variability. Tire rankings may differ on other types of snow and ice conditions.
Standard

PASSENGER CAR TIRE PERFORMANCE REQUIREMENTS AND TEST PROCEDURES

1970-05-01
HISTORICAL
J918_197005
This SAE Standard provides minimum performance requirements and accompanying uniform laboratory test procedures for evaluating certain essential characteristics of new tires and newly retreaded tires intended for use on passenger cars. (The requirements published in this SAE Standard pertain to tire sizes currently used on American passenger cars and popular sizes used on imported passenger cars. For related information on tire sizes not listed, contact Society of Automotive Engineers, Inc., Detroit Branch Office, 18121 East Eight Mile Road, East Detroit, Michigan 48021.)
Standard

Force and Moment Test Method

2020-06-19
CURRENT
J1987_202006
This SAE Recommended Practice describes the determination of passenger car and light truck tire force and moment properties on a belt-type flat surface test machine. It is suitable for accurately determining five tire forces and moments in steady-state under free-rolling conditions as a function of slip angle and normal force which are incrementally changed in a given sequence.
Standard

Force and Moment Test Method

1998-01-01
HISTORICAL
J1987_199801
This SAE Recommended Practice describes the determination of passenger car and light truck tire force and moment properties on a belt-type flat surface test machine. It is suitable for accurately determining five tire forces and moments in steady-state under free-rolling conditions as a function of slip angle and normal force which are incrementally changed in a given sequence.
Standard

THE MEASUREMENT OF PASSENGER CAR TIRE ROLLING RESISTANCE

1984-06-01
HISTORICAL
J1270_198406
The force, torque, and power methods of measurement are all in common use and should yield the same test results. Effects of steering, traction, and non-steady-state tire operations are excluded from the recommended practice because they are still in the research stage.
Standard

THE MEASUREMENT OF PASSENGER AND LIGHT TRUCK ROLLING RESISTANCE

1985-11-01
HISTORICAL
J1270_198511
The force, torque, and power methods of measurement are all in common use and should yield the same test results. Effects of steering, traction, surface texture, and non-steady-state tire operations are excluded from the Recommended Practice because they are still in the research stage.
Standard

METHODS FOR TESTING SNAP-IN TUBELESS TIRE VALVES

1997-04-01
HISTORICAL
J1206_199704
This SAE Standard contains recommended test methods for snap-in tubeless tire valves intended for, but not limited to, highway applications. A snap-in valve is a tire valve having a rigid housing adhered to a resilient body designed to retain and seal the valve in the rim hole.
Standard

Methods for Testing Snap-In Tubeless Tire Valves

2018-01-19
CURRENT
J1206_201801
This SAE Standard contains recommended test methods for snap-in tubeless tire valves intended for, but not limited to, highway applications. A snap-in valve is a tire valve having a rigid housing adhered to a resilient body designed to retain and seal the valve in the rim hole.
Standard

Light Vehicle Dry Stopping Distance

2010-05-25
HISTORICAL
J2909_201005
This document establishes best practices to measure vehicle stopping distance on dry asphalt in a straight path of travel intended for the purpose of publishing stopping distance by manufacturers and media organizations. It is recommended that the test method within be adopted for all vehicles less than 10 000 lb (4536 kg) GVWR. This procedure is typically used with initial speeds of 100 km/h and 60 mph, but other speeds may be used.
Standard

Light Vehicle Dry & Wet Stopping Distance Test Procedure

2018-06-12
CURRENT
J2909_201806
This document establishes best practices to measure vehicle stopping distance on dry or wet asphalt in a straight path of travel intended for the purpose of publishing stopping distance by manufacturers and media organizations for vehicles with original equipment tires. It is recommended that the test method within be adopted for all vehicles less than 4536 kg (10000 pounds) GVWR. This procedure is typically used with initial speeds of 100 km/h and 60 mph, but other speeds may be used. Since tires play a significant role in stopping distance, this procedure covers tire types typically used as original equipment on new vehicles including all-season, summer, and all-terrain tires. This document may serve as a procedural guideline for all tire types, but the surface temperature correction formulas in this procedure were developed using all-season tires and may not be applicable to other tire types.
Standard

Laboratory Testing Machines for Measuring the Steady State Force And Moment Properties of Passenger Car Tires

2012-08-31
CURRENT
J1106_201208
This Recommended Practice describes some basic design requirements and operational procedures associated with equipment for laboratory measurement of tire force and moment properties of the full range of passenger car tires. These properties must be known to establish the tire's contribution to vehicle dynamic performance. Many factors influence laboratory tire force and moment measurements. This Recommended Practice was compiled as a guide for equipment design and test operation so that data from different laboratories can be directly compared and applied to vehicle design and tire selection problems. It is recognized that laboratory measurements define performance in a controlled and idealized situation that may not correspond to conditions encountered in a vehicle's operating environment. Several decades of testing experience in different laboratories indicates, however, that these tests can provide a very useful bench mark for evaluation of tire performance.
Standard

TESTING MACHINES FOR MEASURING THE UNIFORMITY OF PASSENGER CAR AND LIGHT TRUCK TIRES

1981-08-01
HISTORICAL
J332_198108
In recent years the comfort and fatigue of passengers in vehicles has become a major engineering consideration. Among the many factors involved are vibratory and auditory disturbances. Tires participate, among other elements of the vehicle, in exciting vibrations and noises. Furthermore, tires also may generate forces leading to lateral drift of the vehicle. This recommended practice describes the design requirements of equipment for evaluating some of the characteristic excitations of passenger car and light truck tires which may cause disturbance in vehicles. The kinds of excitations treated result from nonuniformities in the structure of the tire and have their effect when a vehicle bearing the tire travels on a smooth road. This recommended practice also describes some broad aspects of the use of the equipment and lists precautionary measures that have arisen out of current experience.
X