Refine Your Search

Topic

Search Results

Journal Article

Multi-Objective Stability Control Algorithm of Heavy Duty Based on EBS

2014-09-30
2014-01-2382
At present, the active safety and stability of heavy vehicles have becoming big concern among the road transportation industry. The purpose of this paper is to specify the research stability and safety of heavy vehicles those set up the accurate and reliable dynamic vehicle reference model and search the method to improve the stability and safety of tractor and semitrailer. A Multi-objective control algorithm was studied to differential braking based on linear quadratic regulator (LQR) control method. Simulation results show that the multi-objective control algorithm can effectively improve the vehicle driving stability and safety.
Technical Paper

A Fault-Tolerant Control Method for 4WIS/4WID Electric Vehicles Based on Reconfigurable Control Allocation

2018-04-03
2018-01-0560
This paper presents a fault-tolerant control (FTC) method for four-wheel independently driven and steered (4WIS/4WID) electric vehicles based on a reconfigurable control allocation to increase the flexibility for vehicle control and improve the safety of vehicle after the steering actuator fails. The proposed fault tolerant control method consists of the following three parts: 1) a fault detection and diagnosis (FDD) module that monitors vehicle steering condition, detects and diagnoses actuator failures; 2) an upper controller that computes the generalized forces/moments to track the desired vehicle motion and trajectory; 3) a reconfigurable control allocator that optimally distributes the generalized forces/moments to four wheels. The FTC approach based on the reconfigurable control allocation reallocates the generalized forces/moments among healthy steering actuators and driving motors once the actuator failures is detected.
Technical Paper

Research on Steering Performance of Steer-By- Wire Vehicle

2018-04-03
2018-01-0823
With the popularity of electrification and driver assistance systems on vehicle dynamics and controls, the steering performance of the vehicle put forward higher requirements. Thus, the steer-by-wire technology is becoming particularly important. Through specific control algorithm, the steer-by-wire system electronic control unit can receive signals from other sensors on the vehicle, realize the personalized vehicle dynamics control on the basis of understanding the driver’s intention, and grasp the vehicle movement state. At the same time, to make these driver assistance systems better cooperate with human drivers, reduce system frequent false warning, full consideration of mutual adaptation for the systems and the driver’s characteristics is critical. This paper focuses on the steering performance of steer-by-wire vehicle. Feature parameters are obtained from the virtual turning experiment designed on the driving simulator experimental platform.
Technical Paper

A Braking Force Distribution Strategy in Integrated Braking System Based on Wear Control and Hitch Force Control

2018-04-03
2018-01-0827
A braking force distribution strategy in integrated braking system composed of the main braking system and the auxiliary braking system based on braking pad wear control and hitch force control under non-emergency braking condition is proposed based on the Electronically Controlled Braking System (EBS) to reduce the difference in braking pad wear between different axles and to decrease hitch force between tractors and trailers. The proposed strategy distributes the braking force based on the desired braking intensity, the degree of the braking pad wear and the limits of certain braking regulations to solve the coupling problems between braking safety, economical efficiency of braking and the comfort of drivers. Computer co-simulations of the proposed strategy are performed.
Technical Paper

Research on an AKF Estimator of the Gravity Centre and States of Commercial Vehicles

2013-11-27
2013-01-2818
The commercial vehicle is widely used in the overland transport. A prediction is given on the 9th annual China automotive industry forum that the number of the global commercial vehicles will reach eight million by the year of 2016. However, since the distance between its gravity centre and the ground is larger than that of the passenger vehicle, considering its comparatively short wheelbase, the rollover accident, which is fatal to the drivers and always makes enormous loss of merchandises, easily occurs in the case of commercial vehicles. As the number of the commercial vehicle is increasing fast, the accidents will occur more frequently, the losses will be increasingly enormous. To solve the problem, many researches about rollover early warning systems have been done. In most cases, it is assumed that the references of the vehicle are given.
Technical Paper

Fault Tolerant Control Against Actuator Failures of 4WID/4WIS Electric Vehicles

2013-04-08
2013-01-0405
A fault tolerant control (FTC) approach based on reconfigurable control allocation for four-wheel independently driven and steered (4WID/4WIS) electric vehicles against driving motor failures is proposed in order to improve vehicle safety, performance and maneuverability after the driving motor failures. The proposed fault tolerant control method consists of the following three parts: 1) a fault detection and diagnosis (FDD) module that monitors vehicle driving condition, detects and diagnoses actuator failures; 2) a motion controller that computes the generalized forces/moments to track the desired vehicle motion using model predictive control method; 3) a reconfigurable control allocator that optimally distributes the generalized forces/moments to four wheels aiming at minimizing the total tire usage. The FTC approach is based on the reconfigurable control allocation which reallocates the generalized forces/moments among healthy actuators once the actuator failures is detected.
Technical Paper

Study on Braking Force Distribution Algorithm for Hybrid Electric Bus Based on EBS

2013-04-08
2013-01-0411
In order to improve the braking energy recovery, a parallel hybrid electric bus simulation model with electric braking system (EBS) was established by co-simulation platform for the TruckSim and Matlab/Simulink in this paper. EBS makes the front and rear shaft braking force arbitrarily distributed, which is more effective to improve the rate of energy recovery and the braking stability. A braking force distribution algorithm for hybrid electric bus based on EBS was designed in this paper. Under the premise to meet the driver's needs and the ECE regulations, this braking force distribution method focuses on making the braking force distribute to the drive shaft to a maximum extent, so as to obtain the maximum energy recovery rate by the utilization of the motor regenerative braking. At last, the simulation in different operating conditions was used to analyze the braking energy utilization and the braking performance based on the simulation model.
Technical Paper

Variable Yaw Rate Gain for Vehicle Steer-by-wire with Joystick

2013-04-08
2013-01-0413
Steering-By-Wire (SBW) system has advantages of advanced vehicle control system, which has no mechanical linkage to control the steering wheel and front wheels. It is possible to control the steering wheel actuator and front wheels actuator steering independently. The goal of this paper is to use a joystick to substitute the conventional steering wheel with typical vehicle SBW system and to study a variable steering ratio design method. A 2-DOF vehicle dynamic reference model is built and focused on the vehicle steering performance of drivers control joystick. By verifying the results with a hardware-in-the-loop simulation test bench, it shows this proposed strategy can improve vehicle maneuverability and comfort.
Technical Paper

A Model-Based Mass Estimation and Optimal Braking Force Distribution Algorithm of Tractor and Semi-Trailer Combination

2013-04-08
2013-01-0418
Taking a good longitudinal braking performance on flat and level road of tractor and semi-trailer combination as a target, in order to achieve an ideal braking force distribution among axles, while the vehicle deceleration is just depend on the driver's intention, not affected by the variation of semi-trailer mass, the paper proposes a model based vehicle mass identification and braking force distribution strategy. The strategy identifies the driver's braking intention via braking pedal, estimates semi-trailer's mass during the building process of braking pressure in brake chamber, distributes braking force among axles by using the estimated mass. And a double closed-loop regulation of the vehicle deceleration and utilization adhesion coefficient of each axle is presented, in order to eliminate the bad effect of mass estimation error, and enhance the robustness of the whole algorithm. A simulation is conducted by utilizing MATLAB/Simulink and TruckSim.
Technical Paper

Research on Control Strategy of Hierarchical Architecture Based on Drive-by-Wire Chassis

2023-04-11
2023-01-0819
The rapid development of city traffic makes the driving conditions faced by vehicles increasingly complex. The drive-by-wire chassis vehicle has the characteristics of four-wheel independent steering, four-wheel independent drive and four-wheel independent braking, which has become a current research hotspot because that can meet various complex working conditions. However, it is precisely because of the high degree of controllability of the drive-by-wire chassis that the research on the control strategy has become difficult. In this paper, an integrated control strategy based on the hierarchical algorithm framework is designed for the drive-by-wire chassis vehicle, which includes a centralized control layer, a tire force distribution layer and an actuator control layer.
Technical Paper

Analysis of Vehicle Steering Stability of Nonlinear Four Wheel Steering Based on Sliding Mode Control

2018-08-07
2018-01-1593
Steering movement is the most basic movement of the vehicle, in the car driving process, the driver through the steering wheel has always been to control the direction of the car, in order to achieve their own driving intention. Four Wheel Steering (4WS) is an advanced vehicle control technique which can markedly improve vehicle steering characteristics. Compared with traditional front wheel steering vehicles, 4WS vehicles can steer the front wheels and the rear wheels individually for cornering, according to the vehicle motion states such as the information of vehicle speed, yaw velocity and lateral acceleration. Therefore, 4WS can enhance the handling stability and improve the active safety for vehicles.
Technical Paper

Braking Force Distribution and Coordinated Control Algorithm for Hybrid Electric Bus based on EBS

2014-04-01
2014-01-1908
In order to improve the braking energy recovery and ensure the braking comfort, a new type of regenerative braking coordinated control algorithm is designed in this paper. The hierarchical control theory is used to the regenerative braking control algorithm. First, the front axle braking force and rear axle braking force are distributed. Then the rear axle motor braking force and mechanical braking force are distributed. Finally, the dynamic coordinated control strategy is designed to control pneumatic braking system and motor braking system. Aimed at keeping the fluctuation of the total braking force of friction and the regenerative braking force small during braking modes switch, a coordinated controller was designed to control the pneumatic braking system to compensate the error of the motor braking force. Based on Matlab/Simulink platform, a parallel hybrid electric bus simulation model with electric braking system (EBS) was established.
Technical Paper

Development and Research on Control Strategy of Advanced Electronic Braking Systems for Commercial Vehicle

2014-09-30
2014-01-2285
Electronic braking system (EBS) of commercial vehicle is developed based on Anti-lock Braking System (ABS), for the purpose of enhancing the braking performance. Based on the previous study, this paper aims at the development and research on the control strategy of advanced electronic braking system for commercial vehicle, which mainly includes braking force distribution and multiple targets control strategy. In the study of braking force distribution control strategy, the mass of vehicle and the axle loads will be calculated dynamically and the braking force of each wheel will be distributed regarding to the axle loads. The braking intention recognition takes the brake pad wear into account when braking uncritically, so it can detect a difference in the pads between the front and the rear axles. The brake assist strategy supports the driver during emergency braking and the braking distance is shortened by the reduction of the braking system response time.
Technical Paper

A Slip-Rate-Based Braking Force Distribution Algorithm for the Electronic Braking System of Combination Vehicle

2014-09-30
2014-01-2385
The paper focus on enhancing the braking safety and improving the braking performance of the tractor/trailer vehicle. A slip-rate-based braking force distribution algorithm is proposed for the electronic braking system of tractor/trailer combination vehicle. The algorithm controls the slip-rates of the tractor's rear wheels and the semi-trailer's wheels changing with the slip-rate of tractor's front wheels, making tractor's front wheels lock up ahead of the tractor's rear wheels and the semi-trailer's wheels. The algorithm protects the combination vehicle from jackknifing and swing, guaranteeing that the combination vehicle has better driving stability and steering capability. The algorithm can be tested by co-simulation with MATLAB/Simulink and TruckSim software both on high adhesion and low adhesion roads.
Technical Paper

Variable Steering Ratio Design for Vehicle Steer-by-Wire System with Joystick

2016-04-05
2016-01-0455
Steering-by-wire(SBW) system makes the vehicle not constrained by the steering wheel control. Joystick, button and touch screen can all be used for automobile steering control. Using joystick to achieve steering operations has its unique advantages and many problems which are needed to be resolved at the same time. This paper firstly introduced the components of traditional steering wheel steer-by-wire system, then came up with the difference between joystick steer-by-wire system and traditional steer-by-wire system about transmission ratio, transmission ratio control strategy of joystick steer-by-wire system is proposed at the same time. At last, this paper studied driver’s busy degree when the vehicle running with a big turning radius at low speed and the effect of different angle transmission ratio on vehicle handing stability when the vehicle running at intermediate speed.
Technical Paper

Hydraulic Character Modeling and Vehicle Stability Control Algorithm for EHB System of Passenger Car

2016-04-05
2016-01-0454
As a new braking system, EHB can significantly improve the braking performance and vehicle handling and stability. In this paper the structure of high-speed on-off valve and the valve core principle are discussed, the paper also analysis the response of the valve core under different modulation frequency, duty cycle and the change of wheel cylinder pressure. Set a proper modulation frequency to make sure that electromagnetic valve can be worked in a greater linear range.
Technical Paper

Research On Simulation And Control Of Differential Braking Stability Of Tractor Semi-trailer

2015-09-29
2015-01-2842
Heavy vehicles have the characteristics of with high center of gravity position, large weight and volume, wheelbase is too narrow relative to the body height and so on, so that they always prone to rollover. In response to the above heavy security problems of heavy vehicle in running process, this paper mainly analyzes roll stability and yaw stability mechanism of heavy vehicles and studies the influence of vehicle parameters on stability by establishing the vehicle dynamics model. At the same time, this paper focuses on heavy vehicles stability control methods based on simulation and differential braking technology. At last, verify the effect of heavy vehicle stability control by computer simulation. The results shows that self-developed stability control algorithm can control vehicle stability effectively, so that the heavy vehicles instability can be avoided, the vehicle driving safety and braking stability are improved.
Technical Paper

The Brake Pads Compensation Control Algorithm for Brake Force Distribution

2014-09-30
2014-01-2287
A brake pad wear control algorithm used under non-emergency braking conditions is proposed to reduce the difference in brake pad wear between the front and rear axles caused by the difference in brakes and braking force. According to the adhesion state of the pad wear, the control algorithm adjusted the braking force distribution ratio of front and rear wheel that balanced adhesion pad wear value. Computer co-simulations of braking with Trucksim and Matlab/Simulink using vehicle models with equal brake pad wear, greater wear on the front axle and greater wear on the rear axle respectively is performed. The computation simulation results show that meet the brake force distribution system regulatory requirements and total vehicle braking force unchanged.
Technical Paper

Study on Automated Mechanical Transmission Parameters Optimization for Hybrid Electric Bus

2014-09-30
2014-01-2371
For city buses, especially hybrid electric buses, the requirements for the fuel economy and low noises are stricter, comparing with the momentum quality. Since hybrid electric buses sometimes run without the engine, the noises that the transmission makes become the major type. To get better fuel economy and lower noises, this paper focuses on optimizing the characteristics of the automatic mechanical transmission (AMT) in a hybrid electric city bus, and the studies are done as follows. Firstly, in order to reduce the fuel consumption, the transmission ratios are optimized by the co-simulation and optimization in CRUISE and MATLAB, with the limitation of the quality of driving momentum. Secondly, for the purpose of lightweight and lower transmission noise, multi-objective optimization based on reliability is applied in transmission geometric optimization design, the objective function are the smallest volume and the biggest transmission gear contact ratio of the transmission.
Technical Paper

A Feasible Driver-Vehicle Shared Steering Control Actuation Architecture Based on Differential Steering

2022-12-22
2022-01-7080
To address the current situation of the limited driver-vehicle cooperative steering actuation structure, this paper proposes a feasible driver-vehicle shared steering control actuation architecture based on the differential steering. Firstly, a shared steering execution architecture is established, which contains traditional steering system controlled by human driver and differential steering system acting as the automatic execution system. In this paper, a specific driver-vehicle shared control architecture is established with the front-wheel hub motor-based differential steering system and a single-view angle based human driver model. Then, an upper-level sliding mode controller for path tracking is developed and implemented as the automatic steering system, and the driver-vehicle shared control is achieved by the proposed non-cooperative game model.
X