Refine Your Search

Topic

Author

Affiliation

Search Results

Journal Article

Effect of Swirl Ratio and Wall Temperature on Pre-lnjection Chemiluminescence During Starting of an Optical Diesel Engine

2009-11-02
2009-01-2712
Fuel wall impingement commonly occurs in small-bore diesel engines. Particularly during engine starting, when wall temperatures are low, the evaporation rate of fuel film remaining from previous cycles plays a significant role in the autoignition process that is not fully understood. Pre-injection chemiluminescence (PIC), resulting from low-temperature oxidation of evaporating fuel film and residual gases, was measured over 3200 μsec intervals at the end of the compression strokes, but prior to fuel injection during a series of starting sequences in an optical diesel engine. These experiments were conducted to determine the effect of this parameter on combustion phasing and were conducted at initial engine temperatures of 30, 40, 50 and 60°C, at swirl ratios of 2.0 and 4.5 at 1000 RPM. PIC was determined to increase and be highly correlated with combustion phasing during initial cycles of the starting sequence.
Journal Article

Effects of Fuel Cell Material Properties on Water Management Using CFD Simulation and Neutron Imaging

2010-04-12
2010-01-0934
Effects of fuel cell material properties on water management were numerically investigated using Volume of Fluid (VOF) method in the FLUENT. The results show that the channel surface wettability is an important design variable for both serpentine and interdigitated flow channel configurations. In a serpentine air flow channel, hydrophilic surfaces could benefit the reactant transport to reaction sites by facilitating water transport along channel edges or on channel surfaces; however, the hydrophilic surfaces would also introduce significantly pressure drop as a penalty. For interdigitated air flow channel design, it is observable that liquid water exists only in the outlet channel; it is also observable that water distribution inside GDL is uneven due to the pressure distribution caused by interdigitated structure. An in-situ water measurement method, neutron imaging technique, was used to investigate the water behavior in a PEM fuel cell.
Journal Article

Characteristics of Ion Current Signals in Compression Ignition and Spark Ignition Engines

2010-04-12
2010-01-0567
Ion current sensors have been considered for the feedback electronic control of gasoline and diesel engines and for onboard vehicles powered by both engines, while operating on their conventional cycles or on the HCCI mode. The characteristics of the ion current signal depend on the progression of the combustion process and the properties of the combustion products in each engine. There are large differences in the properties of the combustible mixture, ignition process and combustion in both engines, when they operate on their conventional cycles. In SI engines, the charge is homogeneous with an equivalence ratio close to unity, ignition is initiated by an electric spark and combustion is through a flame propagating from the spark plug into the rest of the charge.
Journal Article

Transient Fluid Flow and Heat Transfer in the EGR Cooler

2008-04-14
2008-01-0956
EGR is a proven technology used to reduce NOx formation in both compression and spark ignition engines by reducing the combustion temperature. In order to further increase its efficiency the recirculated gases are subjected to cooling. However, this leads to a higher load on the cooling system of the engine, thus requiring a larger radiator. In the case of turbocharged engines the large variations of the pressures, especially in the exhaust manifold, produce a highly pulsating EGR flow leading to non-steady-state heat transfer in the cooler. The current research presents a method of determining the pulsating flow field and the instantaneous heat transfer in the EGR heat exchanger. The processes are simulated using the CFD code FIRE (AVL) and the results are subjected to validation by comparison with the experimental data obtained on a 2.5 liter, four cylinder, common rail and turbocharged diesel engine.
Journal Article

Characterization of the Near-Field Spray and Internal Flow of Single-Hole and Multi-Hole Sac Nozzles using Phase Contrast X-Ray Imaging and CFD

2011-04-12
2011-01-0681
It is well know that the internal flow field and nozzle geometry affected the spray behavior, but without high-speed microscopic visualization, it is difficult to characterize the spray structure in details. Single-hole diesel injectors have been used in fundamental spray research, while most direct-injection engines use multi-hole nozzle to tailor to the combustion chamber geometry. Recent engine trends also use smaller orifice and higher injection pressure. This paper discussed the quasi-steady near-nozzle diesel spray structures of an axisymmetric single-hole nozzle and a symmetric two-hole nozzle configuration, with a nominal nozzle size of 130 μm, and an attempt to correlate the observed structure to the internal flow structure using computational fluid dynamic (CFD) simulation. The test conditions include variation of injection pressure from 30 to 100 MPa, using both diesel and biodiesel fuels, under atmospheric condition.
Technical Paper

Effect of ADOIL TAC Additive on Diesel Combustion

1991-11-01
912555
Some papers on the combustion in a diesel engine have been already presented to discuss the effect of the additive called ADOIL TAC. A bottom view DI diesel engine driven at 980rpm with no load was used in the experiment presented here, in order to make clear this effect. JIS second class light diesel fuel oil was injected through a hole nozzle at the normal test run. The additive was intermixed 0.01 vol. % in this fuel oil, in the experiments to compare with the normal combustion. The flame was taken by direct high-speed photography. Profiles of flame temperature and KL were detected on the film by image processing, applying the two-color method. Soot was visualized by high-speed laser shadowgraphy, and the heat release rate was calculated using the cylinder pressure diagram. Discussion on the effect of the additive on the combustion phenomena was made by using all the data.
Technical Paper

Advances in High Temperature Components for the Adiabatic Engine

1991-02-01
910457
An advanced low heat rejection engine concept has been selected based on a trade-off between thermal insulating performance and available technology. The engine concept heat rejection performance is limited by available ring-liner tribology and requires cylinder liner cooling to control the piston top ring reversal temperature. This engine concept is composed of a titanium piston, headface plate and cylinder liner insert with thermal barrier coatings. Monolithic zirconia valve seat inserts, and thermal barrier coated valves and intake-exhaust ports complete the insulation package. The tribological system is composed of chrome oxide coated cylinder, M2 steel top piston ring, M2 steel valve guides, and an advanced polyol ester class lubricant.
Technical Paper

Effect of Load and Other Parameters on Instantaneous Friction Torque in Reciprocating Engines

1991-02-01
910752
The effect of many operating parameters on the instantaneous frictional (IFT) torque was determined experimentally in a single cylinder diesel engine. The method used was the (P - ω)method developed earlier at Wayne State University. The operating parameters were load, lubricating oil grade, oil, temperature and engine speed. Also IFT was determined under simulated motoring conditions, commonly used in engine friction measurements. The results showed that the motoring frictional torque does not represent that under firing conditions even under no load. The error reached 31.4% at full load. The integrated frictional torque over the whole cycle and the average frictional torque were determined. A comparison of the average frictional torque under load was compared with the average motoring torque.
Technical Paper

A Fundamental Study on Ignition Characteristics of Two-Component Fuel in a Diesel Spray

2006-10-16
2006-01-3383
The authors have explored the potential of fuel to control spray and its combustion processes in a diesel engine. Fuel has some potential for low emission and high thermal efficiency because its volatility and ignitability are one of the ultimate performing factors of the engines. In present study, the ignition process of mixed fuel spray was investigated in a constant volume combustion vessel and in a rapid compression and expansion machine, The ignition delay based on the diagram of rate of the heat release, the imaging of natural flame emissions and the numerical simulation were carried out to clarify the effect of the physical and chemical properties of mixed fuel on ignition characteristics.
Journal Article

Role of Volatility in the Development of JP-8 Surrogates for Diesel Engine Application

2014-04-01
2014-01-1389
Surrogates for JP-8 have been developed in the high temperature gas phase environment of gas turbines. In diesel engines, the fuel is introduced in the liquid phase where volatility plays a major role in the formation of the combustible mixture and autoignition reactions that occur at relatively lower temperatures. In this paper, the role of volatility on the combustion of JP-8 and five different surrogate fuels was investigated in the constant volume combustion chamber of the Ignition Quality Tester (IQT). IQT is used to determine the derived cetane number (DCN) of diesel engine fuels according to ASTM D6890. The surrogate fuels were formulated such that their DCNs matched that of JP-8, but with different volatilities. Tests were conducted to investigate the effect of volatility on the autoignition and combustion characteristics of the surrogates using a detailed analysis of the rate of heat release immediately after the start of injection.
Journal Article

Particulate Matter Characterization Studies in an HSDI Diesel Engine under Conventional and LTC Regime

2008-04-14
2008-01-1086
Several mechanisms are discussed to understand the particulate matter (PM) characterization in a high speed, direct injection, single cylinder diesel engine using low sulfur diesel fuel. This includes their formation, size distribution and number density. Experiments were conducted over a wide range of injection pressures, EGR rates, injection timings and swirl ratios, therefore covering both conventional and low temperature combustion regimes. A micro dilution tunnel was used to immediately dilute a small part of the exhaust gases by hot air. A Scanning Mobility Particle Sizer (SMPS) was used to measure the particulate size distribution and number density. Particulate mass was measured with a Tapered Element Oscillating Microbalance (TEOM). Analysis was made of the root cause of PM characterization and their relationship with the combustion process under different operating conditions.
Technical Paper

Distribution of Vapor Concentration in a Diesel Spray Impinging on a Flat Wall by Means of Exciplex Fluorescence Method -In Case of High Injection Pressure-

1997-10-01
972916
Diesel sprays injected into a combustion chamber of a small sized high-speed CI engine impinge surely on a piston surface and a cylinder wall. As a consequence, their vaporization, mixture formation and combustion processes are affected by impingement phenomena. And the other important factors affecting on the processes is the injection pressure. Then, the distribution of the vapor concentration in a single diesel spray impinging on a flat and hot wall was experimented by the exciplex fluorescence method, as a simple case. The injection pressure was varied in the range from 55 MPa to 120 MPa. It is found that the distribution of the vapor concentration in this case is much leaner than that in the case of the low injection pressure of 17.8MPa.
Technical Paper

Characteristics of Transient Gas Diffusion Flame

1997-10-01
972965
CNG is one of the future fuel for a CI engine. Recently, the general tendency is the use of the high pressure injection system over 100 MPa in a CI engine for the near future severe regulation. Combustion phenomenon in a CI engine with such injection system is like a transient gas diffusion flame. The flow in a gas diffusion flame was investigated by the particle image velocimetry on its 2-D images, the relative soot concentration, the temperature and the relative CO2 concentration was detected in the experiments. And the model of transient gas diffusion flame was constructed by use of experimental data.
Technical Paper

Effect of Operational Condition on PM in Exhausted Gas through CI Engine

2007-10-29
2007-01-4077
The particulate matters (PM) containing in the exhaust gas through a CI engine affects strongly the human health. Thus, it is very significant to measure the mechanism of PM itself generation for actualization of a clean CI engine. On the standpoint mentioned above, the authors carried out the experiments of the characteristics of PM generated from a small high speed DI CI engine with a single cylinder. The variables were the equivalence ratio, the injection timing, the EGR rate and the sort of fuel. As a result, the effect of experimental condition on the distribution of PM is clear through experiments.
Technical Paper

In-Cylinder Air/Fuel Ratio Approximation Using Spark Gap Ionization Sensing

1998-02-23
980166
Experiments were conducted on a single cylinder engine to measure the ionization current across the spark plug electrodes as a function of key operating parameters including air/fuel ratio. A unique ignition circuit was adapted to measure the ion current as early as 300 microseconds after the initiation of spark discharge. A strong relationship between air/fuel ratio and features of the measured ion current was observed. This relationship can be exploited via relatively simple algorithms in a wide range of electronic engine control strategies. Measurements of spark plug ion current for approximating air/fuel ratio may be especially useful for use with low cost mixture control in small engine applications. Cylinder-to-cylinder mixture balancing in conjunction with a global exhaust gas oxygen sensor is another promising application of spark plug ion current measurement.
Technical Paper

Determination of the Gas-Pressure Torque of a Multicylinder Engine from Measurements of the Crankshaft's Speed Variation

1998-02-23
980164
The local variation of the crankshaft's speed in a multicylinder engine is determined by the resultant gas-pressure torque and the torsional deformation of the crankshaft. Under steady-state operation, the crankshaft's speed has a quasi-periodic variation and its harmonic components may be obtained by a Discrete Fourier Transform (DFT). Based on a lumped-mass model of the shafting, correlations are established between the harmonic components of the speed variation and the corresponding components of the engine torque. These correlations are used to calculate the gas-pressure torque or the indicated mean effective pressure (IMEP) from measurements of the crankshaft's speed.
Technical Paper

Emissions Comparisons of an Insulated Turbocharged Multi-Cylinder Miller Cycle Diesel Engine

1998-02-23
980888
The experimental emissions testing of a turbocharged six cylinder Caterpillar 3116 diesel engine converted to the Miller cycle operation was conducted. Delayed intake valve closing times were also investigated. Effects of intake valve closing time, injection time, and insulation of piston, head, and liner on the emission characteristics of the Miller cycle engine were experimentally verified. Superior performance and emission characteristic was achieved with a LHR insulated engine. Therefore, all emission and performance comparisons are made with LHR insulated standard engine with LHR insulated Miller cycle engine. Particularly, NOx, CO2, HC, smoke and BSFC data are obtained for comparison. Effect of increasing the intake boost pressure on emission was also studied. Poor emission characteristics of the Miller cycle engine are shown to improve with increased boost pressure. Performance of the insulated Miller cycle engine shows improvement in BSFC when compared to the base engine.
Technical Paper

Similarity Law of Entrainment into Diesel Spray and Steady Spray

1990-02-01
900447
The surroundings around the diesel spray are entrained during the growth of the spray. The mixing process between the evaporated fuel oil and the entrained surroundings, that is, the entrainment, has a significant meaning for the combustion diesel engine. It is difficult to detect the movement of the entrainment because the diesel spray is the gas-liquid two-phase flow and the unsteady phenomenon within a few milliseconds. Then, in order to clarify and to generalize the movement of entrainment, following three experiments were done. 1)Two-dimensional steady water spray -flat spray- injected into the ambient atmosphere, using tuft and hot wire method. 2) Unsteady water jet injected into water, using tracer. 3)single diesel spray injected into the atmosphere with high pressure at room temperature, using smoke wire.
Technical Paper

Diesel Cold Starting: Actual Cycle Analysis Under Border-Line Conditions

1990-02-01
900441
Combustion in a diesel engine during cold starting under normal and border-line conditions was investigated. Experiments were conducted on a single cylinder, air-cooled, 4-stroke-cycle engine in a cold room. Tests covered different fuels, injection timings and ambient temperatures. Motoring tests, without fuel injection indicated that the compression pressure and temperature are dependent on the ambient temperature and cranking speeds. The tests with JP-5, with a static injection timing of 23° BTDC indicated that the engine may operate on the regular 4-stroke-cycle at normal operating ambient temperatures or may skip one cycle before each firing at moderately low temperatures, i.e. operate on an 8-stroke-cycle mode. At lower temperatures the engine may skip two cycles before each firing cycle, i.e. operate on a 12-stroke-cycle mode. These modes were reproducible and were found to depend mainly on the ambient temperature.
Technical Paper

Nato Durability Test of an Adiabatic Truck Engine

1990-02-01
900621
A previous paper (1)* described the performance improvements which can be obtained by using an “adiabatic” (uncooled) engine for military trucks. The fuel economy improved 16% to 37% (depending upon the duty cycle) and was documented by dynamometer testing and vehicle testing and affirmed by vehicle simulation. The purpose of this paper is to document a NATO cycle 400 hour durability test which was performed on the same model adiabatic engine. The test results showed that the engine has excellent durability, low lubricating oil consumption and minimal deposits.
X