Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

A Study on Evaluation Method of Fuel Economy, Electric Power Consumption and Emissions of Electrified Heavy-duty Vehicle by Using “X in the Loop Simulation”

2021-09-21
2021-01-1253
To reduce carbon dioxide emissions, the use of vehicles operating on electrification technology, such as plug-in hybrid electric vehicles (PHEVs) and electric vehicles (EVs) is rapidly increasing. A similar trend also exists in the field of heavy-duty vehicles, such as trucks and buses. When evaluating—via the certification test method—the fuel efficiency, electricity efficiency, and exhaust gas emission of heavy-duty vehicles that have many batteries, the powertrain, including the batteries, is modeled and investigated. However, such modeling is difficult because batteries deteriorate, and the ambient temperature fluctuates during vehicle operation. To resolve this issue, we developed a new evaluation method that enables real-time cooperative control of actual batteries and hardware-in-the-loop simulation (HILS).
Journal Article

A Study on High-Accuracy Test Method for Fuel Consumption of Heavy-Duty Diesel Vehicles Considering the Transient Characteristics of Engines

2016-04-05
2016-01-0908
In the conventional approval test method of fuel consumption for heavy-duty diesel vehicles currently in use in Japan, the fuel consumption under the transient test cycle is calculated by integrating the instantaneous fuel consumption rate referred from a look-up table of fuel consumptions measured under the steady state conditions of the engine. Therefore, the transient engine performance is not considered in this conventional method. In this study, a highly accurate test method for fuel consumption in which the map-based fuel consumption rate is corrected using the transient characteristics of individual engines was developed. The method and its applicability for a heavy-duty diesel engine that complied with the Japanese 2009 emission regulation were validated.
Technical Paper

Study on Hybrid Control Methods of Heavy-Duty Plug-In Hybrid Vehicle for Improving Fuel Economy and Emissions

2020-09-15
2020-01-2259
Fuel consumption and exhaust gas emission regulations are being tightened around the world year by year. Electric vehicles are needed to reduce carbon dioxide emissions. Especially, Plug-in hybrid heavy-duty vehicles (PHEVs) are expected to become widespread. PHEVs enable all-electric modes, as well as hybrid modes, using both engines and electric motors, but the control system significantly affects the characteristics of fuel consumption and gas emission. In this study, we used new testing machine (we call extended HILS) to analyze the fuel consumption and gas emission for different plug-in hybrid control systems and investigated the optimal control method for PHEVs.
Journal Article

Miller-PCCI Combustion in an HSDI Diesel Engine with VVT

2008-04-14
2008-01-0644
A variable valve timing (VVT) mechanism has been applied in a high-speed direct injection (HSDI) diesel engine. The effective compression ratio (εeff) was lowered by means of late intake valve closing (LIVC), while keeping the expansion ratio constant. Premixed charge compression ignition (PCCI) combustion, adopting the Miller-cycle, was experimentally realized and numerically analyzed. Significant improvements of NOx and soot emissions were achieved for a wide range of engine speeds and loads, frequently used in a transient mode test. The operating range of the Miller-PCCI combustion has been expanded up to an IMEP of 1.30 MPa.
Technical Paper

Effect of ADOIL TAC Additive on Diesel Combustion

1991-11-01
912555
Some papers on the combustion in a diesel engine have been already presented to discuss the effect of the additive called ADOIL TAC. A bottom view DI diesel engine driven at 980rpm with no load was used in the experiment presented here, in order to make clear this effect. JIS second class light diesel fuel oil was injected through a hole nozzle at the normal test run. The additive was intermixed 0.01 vol. % in this fuel oil, in the experiments to compare with the normal combustion. The flame was taken by direct high-speed photography. Profiles of flame temperature and KL were detected on the film by image processing, applying the two-color method. Soot was visualized by high-speed laser shadowgraphy, and the heat release rate was calculated using the cylinder pressure diagram. Discussion on the effect of the additive on the combustion phenomena was made by using all the data.
Technical Paper

Effects of Cooling Water Temperature on Particulate Emissions from a Small High Speed DI Diesel Engine

1991-02-01
910740
Authors have experimented the effects of cooling water temperature on the particulate emission characteristics from a high speed DI diesel engines. A single cylinder small high speed DI diesel engine is operated under various engine speed and load conditions. Cooling water temperature is varied from 313 K (40 °C) to 363 K (90 °C). Particulate is collected using a single stage full size dilution tunnel. Dry soot and SOF emissions are measured, as well as total particulate. SOF increases when the cooling water temperature decreases, as well as HC increases. SOF also increases as load decreases. This suggests that the SOF emits at the cold starting and warming up periods. This also suggests that the SOF can be reduced by increasing cooling water temperature. IT IS IMPORTANT TO CLARIFY the effects of cooling water temperature on the particulate emission.
Technical Paper

A Fundamental Study on Ignition Characteristics of Two-Component Fuel in a Diesel Spray

2006-10-16
2006-01-3383
The authors have explored the potential of fuel to control spray and its combustion processes in a diesel engine. Fuel has some potential for low emission and high thermal efficiency because its volatility and ignitability are one of the ultimate performing factors of the engines. In present study, the ignition process of mixed fuel spray was investigated in a constant volume combustion vessel and in a rapid compression and expansion machine, The ignition delay based on the diagram of rate of the heat release, the imaging of natural flame emissions and the numerical simulation were carried out to clarify the effect of the physical and chemical properties of mixed fuel on ignition characteristics.
Journal Article

Effect of Biodiesel on NOx Reduction Performance of Urea-SCR System

2010-10-25
2010-01-2278
The use of biomass fuels for vehicles has been a focus of attention all over the world in terms of prevention of global warming, effective utilization of resources and local revitalization. For the purpose of beneficial use of unused biomass resources, the movement of the use of bioethanol and biodiesel made from them has spread in Japan. In Japan, biodiesel is mainly made from waste cooking oil collected by local communities or governments, and in terms of local production for local consumption, it is used as neat fuel (100% biofuel) or mixed with diesel fuel in high concentration for the vehicles. On the other hand, extremely low emission level must be kept for not only gasoline vehicles but also diesel vehicles in the post new long-term regulation implemented from 2009 in Japan.
Technical Paper

Distribution of Vapor Concentration in a Diesel Spray Impinging on a Flat Wall by Means of Exciplex Fluorescence Method -In Case of High Injection Pressure-

1997-10-01
972916
Diesel sprays injected into a combustion chamber of a small sized high-speed CI engine impinge surely on a piston surface and a cylinder wall. As a consequence, their vaporization, mixture formation and combustion processes are affected by impingement phenomena. And the other important factors affecting on the processes is the injection pressure. Then, the distribution of the vapor concentration in a single diesel spray impinging on a flat and hot wall was experimented by the exciplex fluorescence method, as a simple case. The injection pressure was varied in the range from 55 MPa to 120 MPa. It is found that the distribution of the vapor concentration in this case is much leaner than that in the case of the low injection pressure of 17.8MPa.
Technical Paper

Investigation of Particulate Formation of DI Diesel Engine with Direct Sampling from Combustion Chamber

1997-10-01
972969
This paper is concerned with the formation of Particulate Matter (PM) in direct-injection (DI) diesel engines. A system featuring an electromagnetically actuated sampling valve was used for sampling of gas directly from the combustion chamber. The concentrations of total particulate matter (TPM) and of its two components, the Soluble Organic Fractions (SOF) and the Insoluble Fractions (ISF), were determined at different locations in the combustion chamber at different sampling times (different crank angles). High concentrations of SOF were found at sampling positions along the spray flame axis. The concentrations of SOF and ISF were higher at sampling positions close to the wall than away from the wall. The results suggest that SOF formation is significantly affected by wall quenching. Also, the PM concentrations were much higher in the combustion chamber than in the exhaust.
Technical Paper

Characteristics of Transient Gas Diffusion Flame

1997-10-01
972965
CNG is one of the future fuel for a CI engine. Recently, the general tendency is the use of the high pressure injection system over 100 MPa in a CI engine for the near future severe regulation. Combustion phenomenon in a CI engine with such injection system is like a transient gas diffusion flame. The flow in a gas diffusion flame was investigated by the particle image velocimetry on its 2-D images, the relative soot concentration, the temperature and the relative CO2 concentration was detected in the experiments. And the model of transient gas diffusion flame was constructed by use of experimental data.
Technical Paper

Effect of Operational Condition on PM in Exhausted Gas through CI Engine

2007-10-29
2007-01-4077
The particulate matters (PM) containing in the exhaust gas through a CI engine affects strongly the human health. Thus, it is very significant to measure the mechanism of PM itself generation for actualization of a clean CI engine. On the standpoint mentioned above, the authors carried out the experiments of the characteristics of PM generated from a small high speed DI CI engine with a single cylinder. The variables were the equivalence ratio, the injection timing, the EGR rate and the sort of fuel. As a result, the effect of experimental condition on the distribution of PM is clear through experiments.
Technical Paper

Emission Characteristics of a Urea SCR System under the NOx Level of Japanese 2009 Emission Regulation

2007-10-29
2007-01-3996
In order to discuss future technical issues for urea SCR (selective catalytic reduction) system, it is necessary to assess various technical possibilities that would be applied to urea SCR systems which is capable of complying with future emission level requirements, for example Japanese 2009 emission regulation. In this paper, three measures (enhanced insulation on a DOC (diesel oxidation catalyst), aggressive urea solution injection and idling stop) are installed on a urea SCR system of a commercial engine system in order to achieve further NOx (nitrogen oxide) reductions. With combination of these three measures, NOx is drastically reduced to the levels lower than 0.7 g/kWh, which is a NOx limit value of the Japanese 2009 emission regulation. NH3 (ammonia) and HCN (hydro cyanide) are also measured as unregulated harmful components.
Technical Paper

Effect of Exhaust Gas Recirculation on Exhaust Emissions from Diesel Engines Fuelled with Biodiesel

2007-09-16
2007-24-0128
Application of biodiesel fuel (BDF) to diesel engine is very effective to reduce CO2 emission, because bio-diesel is carbon neutral in principle. However, when biodiesel was applied to conventional diesel engines without modification for biodiesel, NOx emission was increased by the change in fuel characteristics. It is necessary to introduce some strategies into diesel engines fuelled with biodiesel for lower NOx emission than conventional diesel fuel case. The purpose of this study is to reveal that exhaust gas recirculation (EGR) is one of the solutions for the reduction of NOx emission and meeting the future emission regulations when using biodiesel. Neat Rapeseed oil methyl ester (RME) as a biodiesel (B100) was applied to diesel engines equipped with high pressure loop (HPL) EGR system and low pressure loop (LPL) EGR system. Cooled HPL EGR was increased during steady-state operations and JE05 transient mode tests.
Technical Paper

Optimization of Engine System for Application of Biodiesel Fuel

2007-07-23
2007-01-2028
Application of biodiesel fuel (BDF) to diesel engine is very effective to reduce CO2 emission, because biodiesel is carbon neutral in principle. However, biodiesels yield an increase in NOx emission from conventional diesel engine, compared with diesel fuel case. Therefore, some strategies are needed for meeting the future emission regulations when using biodiesel. In this study, rapeseed oil methyl ester (RME) was applied to diesel engine equipped with exhaust gas recirculation (EGR) system and NOx storage reduction (NSR) catalyst. NOx reduction rate of NSR catalyst was drastically decreased by using RME, even if injection quantity of RME for rich spike was enhanced. However, an increase in EGR rate could reduce NOx emission without the deterioration in smoke and PM emissions.
Technical Paper

Exploratory Development of Low NOx and High Combustion Load Combustor

1990-09-01
901604
A low emission and high combustion load combustor is developed. The combustor reduces both NOx and unburnt fractions using rich-lean staged combustion. NOx is suppressed by fuel-rich combustion in the primary combustion chamber. Unburnt fraction is oxidized by the transition from rich to lean combustion. To avoid NOx formation, residence time nearby stoichiometry is shortened. NOx is less than 24.8 ppm(16 % O2 equivalence) or 2.26 g/kg throughout the experiments. Combustion efficiency is high regardless of the wide operating range. Specific combustion load is up to 33.6 MW/m3 without excessive NOx emission under atmospheric air condition.
Technical Paper

Similarity Law of Entrainment into Diesel Spray and Steady Spray

1990-02-01
900447
The surroundings around the diesel spray are entrained during the growth of the spray. The mixing process between the evaporated fuel oil and the entrained surroundings, that is, the entrainment, has a significant meaning for the combustion diesel engine. It is difficult to detect the movement of the entrainment because the diesel spray is the gas-liquid two-phase flow and the unsteady phenomenon within a few milliseconds. Then, in order to clarify and to generalize the movement of entrainment, following three experiments were done. 1)Two-dimensional steady water spray -flat spray- injected into the ambient atmosphere, using tuft and hot wire method. 2) Unsteady water jet injected into water, using tracer. 3)single diesel spray injected into the atmosphere with high pressure at room temperature, using smoke wire.
Technical Paper

Experimental Study on Unsteady Wall Impinging Jet

1990-02-01
900605
This paper presents a fundamental study on the mixture formation process in a direct injection stratified charge (DISC) engine. Helium is injected intermittently and impinged on a wall to clarify the unsteady wall impinging jet. Instantaneous concentration and pressure distributions are obtained by using fast-response concentration and pressure probes, respectively. The jet tip rolls up after the impingement on the wall, consequently the volume of an unsteady wall impinging jet becomes larger than that of a steady wall impinging jet. Wall impingement increases air entrainment, which could promote faster combustion in DISC engines.
Technical Paper

Experimental Study on Unsteady Jet Impinging on the Projection on a Wall

1990-02-01
900607
The mixture formation process plays an important role on combustion in the direct injection stratified charge engine. A new mixture formation technology named OSKA has been developed for direct injection stratified charge SI engines. The OSKA process has the potential to yield better fuel economy and cleaner emissions. However, the mixture formation process has not been clarified completely, and detailed studies of the mixture formation process with the OSKA technology are needed. As a fundamental study on the OSKA mixture formation, time and space resolved distribution is obtained on concentration and on pressure in the unsteady gas jet, which discharges with constant injection pressure into a quiescent atmosphere and impinges on a projection placed on a wall.
Technical Paper

Effect of Octane Rating and Charge Stratification on Combustion and Operating Range with DI PCCI Operation

2007-01-23
2007-01-0053
A single cylinder engine has been run with direct-injection premixed charge compression ignition (PCCI) operation. The operation is fueled with primary reference fuels for a wide variety of injection timing and equivalence ratio to investigate the effect of charge stratification and octane rating on PCCI combustion. The test results showed that although the change of the injection timing can gain the high combustion efficiency for a wide range of equivalence ratio, the combustion phasing where the high combustion efficiency is accomplished is not varied only by changing the injection timings. Therefore, the only change of injection timings does not improve the thermal efficiency which is influenced by the combustion phasing. On the other hand, at the fixed compression ratio, inlet air temperature and so on, the octane rating is useful in altering the combustion phasing.
X