Refine Your Search

Topic

Author

Affiliation

Search Results

Journal Article

Improvement and Validation of Hybrid III Dummy Knee Finite Element Model

2015-04-14
2015-01-0449
The public Hybrid III family finite element models have been used in simulation of automotive safety research widely. The validity of an ATD finite element model is largely dependent on the accuracy of model structure and accurate material property parameters especially for the soft material. For Hybrid III 50th percentile male dummy model, the femur load is a vital parameter for evaluating the injury risks of lower limbs, so the importance of accuracy of knee subcomponent model is obvious. The objective of this work was to evaluate the accuracy of knee subcomponent model and improve the validity of it. Comparisons between knee physical model and knee finite element model were conducted for both structure and property of material. The inaccuracy of structure and the material model of the published model were observed.
Journal Article

Frontal Crash Protection in Pre-1998 Vehicles versus 1998 and Later Vehicles

2010-04-12
2010-01-0142
This investigation addresses and evaluates: (1) belted drivers in frontal crashes; (2) crashes divided into low, medium, and high severity; (3) air-bag-equipped passenger vehicles separated into either model years 1985 - 1997 (with airbags) or model years 1998 - 2008; (4) rate of Harm as a function of crash severity and vehicle model year; and (5) injury patterns associated with injured body regions and the involved physical components, by vehicle model year. Comparisons are made between the injury patterns related to drivers seated in vehicles manufactured before 1998 and those manufactured 1998 or later. The purpose of this comparative analysis is to establish how driver injury patterns may have changed as a result of the introduction of more recent safety belt technology, advanced airbags, or structural changes.
Journal Article

Injury Risk Investigation of the Small, Rear-seat Occupant in Side Impact

2012-04-16
2012-01-0092
For children seated next to the struck side, real-world crash outcome was determined for the rear-seat of passenger vehicles over the entire range of side impact crash severities. The method was first to calculate the actual risk for an occupant based on field data. The data sources were non-rollover, tow-away crashes from the 1997 - 2009 National Automotive Sampling System. By limiting the struck passenger vehicle to model year 1985 or newer, field data were identified for a total of 588 children. In all crashes, the child was seated in the rear-seat area on the struck side of the passenger vehicle. A matrix of MADYMO model simulations calculated the response of child dummies over the entire range of the field data. Age-dependent, moderate-to-serious (AIS ≥ 2) injury risk curves were derived and evaluated for children in side impact. Risks to the children were calculated by combining the derived child risk curves with the MADYMO model simulations.
Technical Paper

Ankle Joint Injury Mechanism for Adults in Frontal Automotive Impact

1991-10-01
912902
Accident cases are examined to determine the injury mechanism for foot/ankle moderate and greater injuries in vehicle crashes. The authors examine 480 in-depth cases from the National Accident Sampling System for the years 1979 through 1987. An injury mechanism - a description of how the foot/ankle physically interacted with the interior of the vehicle - is assigned to each of the injured occupants. For the accidents in which the 480 occupants were injured, the more prominent types of vehicle collisions are characterized.
Technical Paper

Modeling and Application of a Pregnant 5th Percentile Female Occupant

2007-06-12
2007-01-2492
A 32-week pregnant 5th percentile female occupant model was developed. The uterus with fetus, amniotic fluid, placenta, fat, and ligaments, etc. was modeled by finite element methods, and it was integrated into MADYMO facet 5th percentile female occupant model. The model was validated via abdominal response corridors under belt loading and bar loading. It was used to study the strain of the uterine wall where the placental is contacted during car crash accidents, for the placental abruption is one of the major risks to the fetus. The simulation results show that the traditional 3-pt belt may not provide good protection for the fetus due to large strain can be found during car crash. So, two kinds of new belts were presented. They use different kinds of sheets to enwrap the protuberant abdomen of the pregnant female occupant in order to decrease the movement of the uterus relatively to the body. Thus, the strain of the uterine wall can be decreased significantly.
Technical Paper

Study on the Step by Step Energy Absorption Method Based on the Theory of Reverse Design

2007-08-05
2007-01-3685
As the length of the frontal structure of the minibus can't be as long as cars, some new methods have to be developed to maximum the effect of the energy absorption. In this paper, a step-by-step energy absorption method which based on reverse design was proposed. Two plates with different size and different thickness which can take part in the energy absorption step by step were added in each of the rectangular longitudinal beams. Finite element models were developed both for rectangular beam and minibus. Multi-body model was also developed for the restraint system. The validation of the rectangular beam model was done by sled test, and the minibus model was done by minibus crash test. The computational results matched well with the test results. Then, orthogonal experimental method was used to find the most effective parameters for the energy absorption. These parameters were optimized in the simulation of minibus crash.
Technical Paper

Development of a Two-Dimensional Driver Side Airbag Deployment Algorithm

1990-10-01
902323
A PC based interactive program was developed to simulate the unfolding and deploying process of a driver side airbag in the sagittal plane. The airbag was represented by a series of nodes. The maximum allowable stretch was less or equal to one between any two nodes. We assumed that the airbag unfolding was pivoted about folded points. After the completion of the unfolding process the airbag would begin to deploy. During the deploying process, two parameters were used to determine the nodal priority of the inflation. The first parameter was the distance between the instantaneous and final positions of a node. Nodes with longer distances to travel will have to move faster. We also considered the distance between the current nodal position and the gas inlet location. For a node closer to the gas inlet, we assumed that the deploying speed was faster. A graphical procedure was used to calculate the area of the airbag.
Technical Paper

Using Forefoot Acceleration to Predict Forefoot Trauma in Frontal Crashes

2007-04-16
2007-01-0704
A common injury type among foot and ankle injury is the Lisfranc trauma, or injury to the forefoot. The Lisfranc injury indicates abnormal alignment of the tarsal-metatarsal joints with the loss of their normal spatial relationships. In 2003, Smith completed a laboratory study of this injury mechanism at Wayne State University [1, 2]. He found Lisfranc trauma was correlated with impact force to the forefoot. He proposed a probability of injury function that is based on the applied force to the forefoot. This study examined the instrumentation in the foot of the dummies in the USA New Car Assessment Program (NCAP) and Insurance Institute of Highway Safety (IIHS) frontal crashes. Nineteen different passenger vehicles representing four different vehicle classes were selected based mostly on a large presence in the USA vehicle fleet. Both NCAP and IIHS crashed these nineteen makes and models.
Technical Paper

Side Impact Risk for 7-13 Year Old Children

2008-04-14
2008-01-0192
The purpose of this paper is to assess the vehicle environment that a child occupant, between the ages of seven and thirteen years old, is exposed to in a real world crash. The focus of analysis is on those child occupants that are seated at the struck side in a lateral collision. This study was based on data extracted from the National Automotive Sampling System / Crashworthiness Data System (NASS/CDS) between years 1991-2006. Analysis was based upon the evaluation of the projected consequence of injury to the child occupants. The societal costs generated as a result of occupant injuries were quantified. The societal cost, or Harm, acts as a measure of consequence of occupant exposure to the vehicle environment, when involved in a collision. The Harm was determined as a function of ΔV, principal direction of force, vehicle extent of damage, the pattern of damage to the vehicle, and the magnitude of intrusion based on the occupant seating position.
Technical Paper

Mechanical Properties of the Cadaveric and Hybrid III Lumbar Spines

1998-11-02
983160
This study identified the mechanical properties of ten cadaveric lumbar spines and two Hybrid III lumbar spines. Eight tests were performed on each specimen: tension, compression, anterior shear, posterior shear, left lateral shear, flexion, extension and left lateral bending. Each test was run at a displacement rate of 100 mm/sec. The maximum displacements were selected to approximate the loading range of a 50 km/h Hybrid III dummy sled test and to be non-destructive to the specimens. Load, linear displacement and angular displacement data were collected. Bending moment was calculated from force data. Each mode of loading demonstrated consistent characteristics. The load-displacement curves of the Hybrid III lumbar spine demonstrated an initial region of high stiffness followed by a region of constant stiffness.
Technical Paper

Upper Neck Response of the Belt and Air Bag Restrained 50th Percentile Hybrid III Dummy in the USA's New Car Assessment Program

1998-11-02
983164
Since 1994, the New Car Assessment Program (NCAP) of the National Highway Traffic Safety Administration (NHTSA) has compiled upper neck loads for the belt and air bag restrained 50th percentile male Hybrid III dummy. Over five years from 1994 to 1998, in frontal crash tests, NCAP collected upper neck data for 118 passenger cars and seventy-eight light trucks and vans. This paper examines these data and attempts to assess the potential for neck injury based on injury criteria included in FMVSS No. 208 (for the optional sled test). The paper examines the extent of serious neck injury in real world crashes as reported in the National Automotive Sampling System (NASS). The results suggest that serious neck injuries do occur at higher speeds for crashes involving occupants restrained by belts in passenger cars.
Technical Paper

Development of a Finite Element Model of the Human Neck

1998-11-02
983157
A three-dimensional finite element model of a human neck has been developed in an effort to study the mechanics of cervical spine while subjected to impacts. The neck geometry was obtained from MRI scans of a 50th percentile male volunteer. This model, consisting of the vertebrae from C1 through T1 including the intervertebral discs and posterior elements, was constructed primarily of 8-node brick elements. The vertebrae were modeled using linear elastic-plastic materials, while the intervertebral discs were modeled using linear viscoelastic materials. Sliding interfaces were defined to simulate the motion of synovial facet joints. Anterior and posterior longitudinal ligaments, facet joint capsular ligaments, alar ligaments, transverse ligaments, and anterior and posterior atlanto-occipital membranes were modeled as nonlinear bar elements or as tension-only membrane elements. A previously developed head and brain model was also incorporated.
Technical Paper

Injury Mechanism of the Head and Face of Children in Side Impacts

2009-04-20
2009-01-1434
This study assessed the primary involved physical components attributed to the head and face injuries of child occupants seated directly adjacent to the stuck side of a vehicle in a side impact collision. The findings presented in this study were based upon analysis of the National Automotive Sampling System/Crashworthiness Data System (NASS/CDS) for the years 1993–2007. Injury analysis was conducted for those nearside child occupants aged between 1–12 years-old. The involved children were classified as toddler-type, booster-type, or belted-type occupants. These classifications were based upon the recommended restraint system for the occupant. Injury mechanisms were assessed for the child occupants in each of the three groups. A detailed study of NASS/CDS cases was conducted to provide a greater understanding of the associated injury mechanisms.
Technical Paper

Structural Improvement for the Crash Safety of Commercial Vehicle

2009-10-06
2009-01-2917
Statistic analysis on commercial vehicle crash accidents in China were done by using the annual traffic accident reports from Ministry of Public Security. The Chinese crash safety rules on commercial vehicle were introduced. The main reasons which cause severe injury to the passenger in the cab in frontal crash accidents were studied. HYPERMESH software was used to do the finite element modelling of the frontal structure and cab of a production truck. The swing hammer impact simulation was conducted by using LS-DYNA software and the results were compared with the test results to validate the model. A new supporting structure for the cab to improve the safety of the passenger in cab was proposed. Meanwhile, an extendable and retractable longitudinal beam energy absorbing structure was also studied by using the finite element model. The simulation results show that these structures can obviously improve the frontal crash safety of the commercial vehicle.
Technical Paper

Structural Improvement of the S-beam of a Production SUV

2010-04-12
2010-01-1005
The S-beam of sports utility vehicles (SUV's) plays a key role in their frontal crashworthiness performance. To study the deformation patterns of the S-beam, a finite element model of a production SUV was developed and validated. Both experimental and simulation results show that large downward and inward deformation occurred at the S-beam in frontal crash. In order to control the deformation of the S-beam, two structural improvement methods were proposed. Computational simulation and tests were conducted to study their effectiveness. Results show that both of these improved methods can control the deformation of the S-beam effectively. The second design was then adapted to manufacture two SUV's for frontal and 40% offset frontal crashes. Experiments showed that the new S-beam design resulted in improvement in structural performance in full frontal crash as well as 40% offset crash modes.
Technical Paper

A tibial mid-shaft injury mechanism in frontal automotive crashes

2001-06-04
2001-06-0241
Lower extremity injuries in frontal automotive crashes usually occur with footwell intrusion where both the knee and foot are constrained. In order to identify factors associated with tibial shaft injury, a series of numerical simulations were conducted using a finite element model of the whole human body. These simulations demonstrated that tibial mid-shaft injuries in frontal crashes could be caused by an abrupt change in velocity and a high rate of footwell intrusion.
Technical Paper

Mathematical Modeling of the Hybrid III Dummy Chest with Chest Foam

1991-10-01
912892
A nonlinear foam was added to a previously created three-dimensional finite element model of the Hybrid III dummy chest which consisted of six steel ribs, rib damping material, the sternum, a spine box and a pendulum. Two standard calibration pendulum impact tests for a Hybrid III dummy chest were used to validate the new model. An explicit finite element analysis code PAM-CRASH was utilized to simulate the dynamic process. At impact velocities of 6.7 m/s and 4.3 m/s, the force and deflection time history as well as the force-deflection plots showed good agreement between model predictions and calibration data. Peak strains also agreed well with experimental data.
Technical Paper

Reliability Optimal Design of B-pillar in Side Impact

2016-04-05
2016-01-1523
The traditional deterministic optimal design is mostly based on meeting regulatory requirements specified in impact standards, without taking the randomness of the impact velocity and angle at the real world situation into consideration. This often leads to the optimization results that converge to the boundary constraints, thus cannot meet the reliability requirements of the product design. Structure members of B-pillar (e.g. inner panel, outer panel, and the reinforcing plate) play a major role in the side impact safety performance. This paper dealt with optimization of B-pillar by considering its dimensions and materials as the design variables, and the impact velocity and angle from real-world traffic accident conditions as the random variable inputs. Using a combination of design of experiment, response surface models, reliability theory and the reliability of design optimization method, a B-pillar was constructed based on the product quality engineering.
Technical Paper

Aortic Mechanics in High-Speed Racing Crashes

2012-04-16
2012-01-0101
Auto racing has been in vogue from the time automobiles were first built. With the dawn of modern cars came higher engine capacities; the speeds involved in these races and crashes increased as well. However, the advent of passive restraint systems such as the helmet, HANS (Head and Neck Support device), multi-point harness system, roll cage, side and frontal crush zones, racing seats, fire retardant suits, and soft-wall technology, have greatly improved the survivability of the drivers in high-speed racing crashes. Three left lateral crashes from Begeman and Melvin (2002), Case #LAS12, #IND14 and #99TX were used as inputs to the Wayne State Human Body Model (WSHBM) in a simulated racing buck. Twelve simulations with delta-v, six-point harness and shoulder pad as design variables were analyzed for the average maximum principal strain (AMPS) in the aorta. The average AMPS for the high-speed crashes were 0.1551±0.0172 while the average maximum pressure was 110.50±4.25 kPa.
Technical Paper

Frontal Crash Protection Performance of Integrated Child Safety Seat

2013-04-08
2013-01-1160
Child Restraint Systems (CRS), when used properly, can effectively avoid or reduce injury for children in motor vehicle crashes. To deal with the problems of the high rate of misuse of the CRS and submarining in frontal crashes when child occupants using traditional vehicle seat belts, a novel integrated child safety seat (ICSS) with a four-point seat belt and a ring-shaped lap belt was developed in this study. It is easy to operate and has lower rate of misuse. To study the protection performance of the newly developed ICSS in frontal crashes, a sled test and a series of simulations were conducted. The frontal impact sled test was conducted according to the European regulation ECE R44, which includes a Q6 anthropomorphic test device (ATD) and the impact velocity is 50 km/h. The simulation model included the ICSS model and the Q6 ATD model was developed in the MADYMO software, and the simulation model was validated by the sled test.
X