Refine Your Search

Search Results

Viewing 1 to 4 of 4
Technical Paper

Mechanical Properties of the Cadaveric and Hybrid III Lumbar Spines

1998-11-02
983160
This study identified the mechanical properties of ten cadaveric lumbar spines and two Hybrid III lumbar spines. Eight tests were performed on each specimen: tension, compression, anterior shear, posterior shear, left lateral shear, flexion, extension and left lateral bending. Each test was run at a displacement rate of 100 mm/sec. The maximum displacements were selected to approximate the loading range of a 50 km/h Hybrid III dummy sled test and to be non-destructive to the specimens. Load, linear displacement and angular displacement data were collected. Bending moment was calculated from force data. Each mode of loading demonstrated consistent characteristics. The load-displacement curves of the Hybrid III lumbar spine demonstrated an initial region of high stiffness followed by a region of constant stiffness.
Technical Paper

A New Device for High-Speed Biaxial Tissue Testing: Application to Traumatic Rupture of the Aorta

2005-04-11
2005-01-0741
A biaxial test device was designed to obtain the material properties of aortic tissue at rates consistent with those seen in automotive impact. Fundamental to the design are four small tissue clamps used to grasp the ends of the tissue sample. The applied load at each clamp is determined using subminiature load cells in conjunction with miniature accelerometers for inertial compensation. Four lightweight carriages serve as mounting points for each clamp. The carriages ride on linear shafts, and are equipped with low-friction bearings. Each carriage is connected to the top of a central drive disk by a rigid link. A fifth carriage, also connected to the drive disk by a rigid link, is attached at the bottom. A pneumatic cylinder attached to the lower carriage initiates rotation of the disk. This produces identical motion of the upper carriages in four directions away from the disk center.
Technical Paper

High Rate Mechanical Properties of the Hybrid Iii and Cadaveric Lumbar Spines in Flexion and Extension

1999-10-10
99SC18
In a previous study by Demetropoules et al., (1998), it was shown that both cadaveric and Hybrid III lumbar spines exhibit loading rate dependency when loaded in a quasi-static mode up to a velocity of 100 mm/s. In these tests, the Hybrid III lumbar spines were generally found to have higher stiffnesses than the human lumbar spines, except in compression. This is probably due to the fact that muscle loading was not simulated when testing the human spines. Additionally, the speed previously used to test the spines was less than that typically seen in automotive crash environment. The purpose of this study was to use a high-rate testing machine to establish the flexion and extension stiffnesses of the human lumbar spine with simulated extensor muscle tone. Two Hybrid III lumbar spines were used to develop the test methodology and to obtain the response of the Hybrid III lumbar spines.
Technical Paper

Development of Numerical Models for Injury Biomechanics Research: A Review of 50 Years of Publications in the Stapp Car Crash Conference

2006-11-06
2006-22-0017
Numerical analyses frequently accompany experimental investigations that study injury biomechanics and improvements in automotive safety. Limited by computational speed, earlier mathematical models tended to simplify the system under study so that a set of differential equations could be written and solved. Advances in computing technology and analysis software have enabled the development of many sophisticated models that have the potential to provide a more comprehensive understanding of human impact response, injury mechanisms, and tolerance. In this article, 50 years of publications on numerical modeling published in the Stapp Car Crash Conference Proceedings and Journal were reviewed. These models were based on: (a) author-developed equations and software, (b) public and commercially available programs to solve rigid body dynamic models (such as MVMA2D, CAL3D or ATB, and MADYMO), and (c) finite element models.
X