Refine Your Search

Topic

Search Results

Journal Article

Analysis of In-Cylinder Hydrocarbons in a Multi-Cylinder Gasoline HCCI Engine Using Gas Chromatography

2009-11-02
2009-01-2698
Gasoline Homogeneous Charge Compression Ignition (HCCI) combustion has been studied widely in the past decade. However, in HCCI engines using negative valve overlap (NVO), there is still uncertainty as to whether the effect of pilot injection during NVO on the start of combustion is primarily due to heat release of the pilot fuel during NVO or whether it is due to pilot fuel reformation. This paper presents data taken on a 4-cylinder gasoline direct injection, spark ignition/HCCI engine with a dual cam system, capable of recompressing residual gas. Engine in-cylinder samples are extracted at various points during the engine cycle through a high-speed sampling system and directly analysed with a gas chromatograph and flame ionisation detector. Engine parameter sweeps are performed for different pilot injection timings and quantities at a medium load point.
Journal Article

Experimental Investigation of a Control Method for SI-HCCI-SI Transition in a Multi-Cylinder Gasoline Engine

2010-04-12
2010-01-1245
In HCCI engines, the Air/Fuel Ratio (AFR) and Residual Gas Fraction (RGF) are difficult to control during the SI-HCCI-SI transition, and this may result in incomplete combustion and/or high pressure raise rates. As a result, there may be undesirably high engine load fluctuations. The objectives of this work are to further understand this process and develop control methods to minimize these load fluctuations. This paper presents data on instantaneous AFR and RGF measurements, both taken by novel experimental techniques. The data provides an insight into the cyclic AFR and RGF fluctuations during the switch. These results suggest that the relatively slow change in the intake Manifold Air Pressure (MAP) and actuation time of the Variable Valve Timing (VVT) are the main causes of undesired AFR and RGF fluctuations, and hence an unacceptable Net IMEP (NIMEP) fluctuation. We also found large cylinder-to-cylinder AFR variations during the transition.
Journal Article

A Detailed Chemistry Simulation of the SI-HCCI Transition

2010-04-12
2010-01-0574
A Stochastic Reactor Model (SRM) has been used to simulate the transition from Spark Ignition (SI) mode to Homogeneous Charge Compression Ignition (HCCI) mode in a four cylinder in-line four-stroke naturally aspirated direct injection SI engine with cam profile switching. The SRM is coupled with GT-Power, a one-dimensional engine simulation tool used for modelling engine breathing during the open valve portion of the engine cycle, enabling multi-cycle simulations. The model is initially calibrated in both modes using steady state data from SI and HCCI operation. The mode change is achieved by switching the cam profiles and phasing, resulting in a Negative Valve Overlap (NVO), opening the throttle, advancing the spark timing and reducing the fuel mass as well as utilising a pilot injection. Experimental data is presented along with the simulation results.
Technical Paper

Intake Port Phenomena in a Spark-Ignition Engine at Part Load

1991-10-01
912401
The flow and heat transfer phenomena in the intake port of a spark ignition engine with port fuel injection play a significant role in the mixture preparation process, especially at part load. The backflow of the hot burned gas from the cylinder into the intake port when the intake valve is opened breaks up any liquid film around the inlet valve, influences gas and wall temperatures, and has a major effect on the fuel vaporization process. The backflow of in-cylinder mixture with its residual component during the compression stroke prior to inlet valve closing fills part of the port with gas at higher than fresh mixture temperature. To quantify these phenomena, time-resolved measurements of the hydrocarbon concentration profile along the center-line of the intake port were made with a fast-response flame ionization detector, and of the gas temperature with a fine wire resistance thermometer, in a single-cylinder engine running with premixed propane/air mixture.
Technical Paper

Unburnt Hydrocarbon Measurement by Means of a Surface Ionisation Detector

1991-02-01
910254
Recent studies in the USA have revealed that the catalysts (which are universally fitted to gasoline automobiles) are failing in service to an unacceptable extent. Although the reasons for the failures are not completely clear, it seems that misfiring, leading to highly exothermic reaction in the catalyst, may be responsible for the damage. Legislation is to be enacted later in this decade to address this problem by requiring on board diagnostic (OBD) systems which can measure misfire, as well as catalyst hydrocarbon (HC) conversion efficiency. Although some ideas have been suggested for the OBD requirements, no fully satisfactory sensor technology has yet appeared. This paper describes a novel hydrocarbon sensor based on a surface catalysis principle. The fundamental studies reported here have been made with the automobile application in mind. A catalytic chemi-ionisation model is proposed in order to enhance our understanding of this surface ionisation.
Technical Paper

Investigation into Partially Premixed Combustion in a Light-Duty Multi-Cylinder Diesel Engine Fuelled Gasoline and Diesel with a Mixture of

2007-10-29
2007-01-4058
Partially premixed compression ignition (PPCI) engines operating with a low temperature highly homogeneous charge have been demonstrated previously using conventional diesel fuel. The short ignition delay of conventional diesel fuel requires high fuel injection pressures to achieve adequate premixing along with high levels of EGR (exhaust gas recirculation) to achieve low NOx emissions. Low load operating regions are typified by substantial emissions of CO and HC and there exists an upper operating load limitation due to very high rates of in-cylinder gas pressure rise. In this study mixtures of gasoline and diesel fuel were investigated using a multi-cylinder light duty diesel engine. It was found that an increased proportion of gasoline fuel reduced smoke emissions at higher operating loads through an increase in charge premixing resulting from an increase in ignition delay and higher fuel volatility.
Technical Paper

Highly Homogeneous Compression Ignition in a Direct Injection Diesel Engine Fuelled with Diesel and Biodiesel

2007-07-23
2007-01-2020
Highly homogeneous compression ignition is difficult to achieve in a direct injection diesel engine. The difficulty of achieving adequate fuel vaporization and the problems of fuel spray wall impingement are the main factors. Limitation of the maximum operating load results from high rates of pressure rise that occur in this combustion regime. The levels of HC and CO emissions are raised substantially when compared with conventional combustion and remain a significant emission factor. In this study, two methods of achieving highly homogeneous combustion in a direct injection diesel engine were investigated, Nissan MK type and early injection. The effects of fuel injection pressure, injection timing, EGR level, EGR cooler efficiency and compression ratio were examined using a conventional 4 cylinder 2.0L common rail diesel engine with 18.4:1 and 14.4:1 compression ratios.
Technical Paper

Real Time In-Cylinder and Exhaust NO Measurements in a Production SI Engine

1998-02-23
980400
A new fast response NO detector, based on the chemiluminescence (CLD) method has been used to measure continuous, real time levels of NO in the cylinder, and simultaneously in the exhaust port of a virtually unmodified production SI engine. The real time NO concentration data show a great deal of information. Simultaneous NO measurements taken in-cylinder at sample points a few millimetres apart show substantial differences. Exhaust and in-cylinder levels from the same cycle show even greater differences, though the levels on average are well correlated.
Technical Paper

Fast Response NO/HC Measurements in the Cylinder and Exhaust Port of a DI Diesel Engine

1998-02-01
980788
A novel Fast Response Chemiluminescence Detector and a Fast Flame Ionization detector have been used to examine the instantaneous NO and unburnt hydrocarbon concentration in the cylinder and exhaust port of a DI Diesel engine. The in-cylinder results indicate very high levels of NO in the premixed phase of combustion, followed by generally lower levels during the diffusion burning phase. Hydrocarbon signals also indicate significant detail. The in-cylinder uHC signal is consistent with the probe location being between two of the fuel sprays. Both in-cylinder and exhaust results indicate rather high cyclic variability in the NO levels at steady conditions. Variations in the timing and structure of the exhaust uHC signal during the valve open period with load may give insight into the fuel spray/air motion.
Technical Paper

A Numerical Simulation of AFR Switch of SI Engines

1998-05-04
981439
A novel mechanical method of achieving a rapid switch between stoichiometric and lean conditions for SI engines is explored. Two and three throttle configurations, a switch strategy which employs a standard intake manifold and an assembly of pipes and throttle(s), are investigated numerically by using a one-dimensional engine simulation program based on the method of characteristics. The results indicate that it is possible to achieve rapid AFR switch without a torque jump, i.e. unperceptible to the driver.
Technical Paper

A Fast Detailed-Chemistry Modelling Approach for Simulating the SI-HCCI Transition

2010-04-12
2010-01-1241
An established Stochastic Reactor Model (SRM) is used to simulate the transition from Spark Ignition (SI) to Homogeneous Charge Compression Ignition (HCCI) combustion mode in a four-cylinder in-line four-stroke naturally aspirated direct injection SI engine with cam profile switching. The SRM is coupled with GT-Power, a one-dimensional engine simulation tool used for modeling engine breathing during the open valve portion of the engine cycle, enabling multi-cycle simulations. The mode change is achieved by switching the cam profiles and phasing, resulting in a Negative Valve Overlap (NVO), opening the throttle, advancing the spark timing and reducing the fuel mass as well as using a pilot injection. A proven technique for tabulating the model is used to create look-up tables in both SI and HCCI modes. In HCCI mode several tables are required, including tables for the first NVO, transient valve timing NVO, transient valve timing HCCI and steady valve timing HCCI and NVO.
Technical Paper

Validation of a Cyclic NO Formation Model with Fast NO Measurements

2001-03-05
2001-01-1010
Experimental data was obtained from a Rover K4 optical access engine and analyzed with a combustion analysis package. Cyclic NO values were calculated by mass averaging the measurements obtained by a fast NO analyzer. While the mass averaged results were used as the basis of comparison for the model, results indicate that mass averaging a fast NO signal is not nearly as critical as mass averaging a fast FID signal. A computer simulation (ISIS - Integrated Spark Ignition engine Simulation) was used to model the NO formation on a cyclic basis by means of the extended Zeldovich equations. The model achieves its cyclic variability through the input of experimentally derived burn rates and a completeness of combustion parameter, which is based on the Rassweiler and Withrow method of calculating mass fraction burned and is derived from the pressure-crank angle record of the engine.
Technical Paper

A Fast Response Particulate Spectrometer for Combustion Aerosols

2002-10-21
2002-01-2714
Particulate emissions from IC engines associated with transient engine conditions are very important (similar to the legislated gaseous emissions). This is true both during real-world and test cycle driving. This paper describes an instrument for measuring the number of particles, and their spectral weighting, in the 5nm to 1000nm size range, with a time response of 200ms. This is achieved via an electrostatic classification technique, consisting of a diffusion charger followed by a multi-element, constant voltage, classifier. Conversion of the data to other metrics, such as mass, is also described. Results are presented from artificial test aerosols and from light and heavy duty diesel engines on standard test cycles.
Technical Paper

A Fourier Analysis Based Synthetic Method for In-cylinder Pressure Estimation

2006-10-16
2006-01-3425
The cylinder pressure signal, as an instantaneous and direct measure of the engine operation, contains valuable information for closed loop engine control and offers very useful engine monitoring and control capabilities. The estimation technique for cylinder pressure has been investigated for many years. Based on the Frequency Analysis Method, a synthetic estimation method is proposed in this paper to estimate pressure. Methods that are successful in obtaining a more accurate estimated cylinder pressure over a wider range of crankshaft angle are reported. Quantitative results obtained from application of the method are also given.
Technical Paper

An Experimental Study on Engine Dynamics Model Based In-Cylinder Pressure Estimation

2012-04-16
2012-01-0896
The information provided by the in-cylinder pressure signal is of great importance for modern engine management systems. The obtained information is implemented to improve the control and diagnostics of the combustion process in order to meet the stringent emission regulations and to improve vehicle reliability and drivability. The work presented in this paper covers the experimental study and proposes a comprehensive and practical solution for the estimation of the in-cylinder pressure from the crankshaft speed fluctuation. Also, the paper emphasizes the feasibility and practicality aspects of the estimation techniques, for the real-time online application. In this study an engine dynamics model based estimation method is proposed. A discrete-time transformed form of a rigid-body crankshaft dynamics model is constructed based on the kinetic energy theorem, as the basis expression for total torque estimation.
Technical Paper

In-Cylinder Measurements of Residual Gas Concentration in a Spark Ignition Engine

1990-02-01
900485
The residual gas fraction prior to ignition at the vicinity of the spark plug in a single cylinder, two-valve spark ignition engine was measured with a fast-response flame ionization hydrocarbon detector. The technique in using such an instrument is reported. The measurements were made as a function of the intake manifold pressure, engine speed and intake/exhaust valve-overlap duration. Both the mean level of the residual fraction and the statistics of the cycle-to-cycle variations were obtained.
Technical Paper

A Numerical Simulation of Intake Port Phenomena in a Spark Ignition Engine Under Cold Starting Conditions

1994-10-01
941874
The paper presents a computer simulation of flow and heat transfer phenomena in the intake port of a spark ignition engine with port fuel injection. Engine cold starting conditions are studied including the effects of in-cylinder mixture back flow into the port. One dimensional air flow and wall fuel film flow models and a two dimensional fuel droplet flow model have been developed using a combination of finite difference approaches. As a result, predictions are obtained that provide detailed picture of the air-fuel mixture properties along the intake port. The model may be of special importance for exhaust gas ignition system simulation as it will provide data concerning mixture formation under conditions of excessive fuel injection during engine start-up. The calculations performed are shown to be phenomenologically correct.
Technical Paper

Length Scale and Turbulence Intensity Measurements in a Motored Internal Combustion Engine

1988-02-01
880380
An advanced high speed hydraulic system consisting of a special ram and hardware digital controller is described with which a hot wire anemometer has been flown across the bore of a motored spark ignition engine. The only access to the engine was a single 3mm diameter hole and thus the engine modifications required for this measurement technique ate minimised. The velocity imposed by the ram system enabled the spatial turbulent structure to be measured with the advantage of an imposed ‘mean flow’, which makes confident analysis of the data possible. Using a novel learning procedure, the required hot wire trajectories can be followed with great accuracy and repeatability. Some results are presented from the engine as well as a simple method for reliable hot wire calibration.
Technical Paper

On the Time Delay in Continuous In-Cylinder Sampling From IC Engines

1989-02-01
890579
When gas sample is continuously drawn from the cylinder of an internal combustion engine, the sample that appears at the end of the sampling system corresponds to the in-cylinder content sometime ago because of the finite transit time which is a function of the cylinder pressure history. This variable delay causes a dispersion of the sample signal and makes the interpretation of the signal difficult An unsteady flow analysis of a typical sampling system was carried out for selected engine loads and speeds. For typical engine operation, a window in which the delay is approximately constant may be found. This window gets smaller with increase in engine speed, with decrease in load, and with the increase in exit pressure of the sampling system.
X