Refine Your Search

Search Results

Viewing 1 to 4 of 4
Technical Paper

Vehicle Engine Aftertreatment System Simulation (VEASS) Model: Application to a Controls Design Strategy for Active Regeneration of a Catalyzed Particulate Filter

2005-04-11
2005-01-0970
Heavy-duty diesel engine particulate matter (PM) emissions must be reduced from 0.1 to 0.01 grams per brake horsepower-hour by 2007 due to EPA regulations [1]. A catalyzed particulate filter (CPF) is used to capture PM in the exhaust stream, but as PM accumulates in the CPF, exhaust flow is restricted resulting in reduced horsepower and increased fuel consumption. PM must therefore be burned off, referred to as CPF regeneration. Unfortunately, nominal exhaust temperatures are not always high enough to cause stable self-regeneration when needed. One promising method for active CPF regeneration is to inject fuel into the exhaust stream upstream of an oxidation catalytic converter (OCC). The chemical energy released during the oxidation of the fuel in the OCC raises the exhaust temperature and allows regeneration.
Technical Paper

Reducing Hydrocarbons and Odor in Diesel Exhaust by Fuel Injector Design

1970-02-01
700734
Exhaust hydrocarbons and odor were reduced in Detroit Diesel Series “71” engines by revising the fuel injector tip design. Five injector tips were investigated which had different volumes of uncontrolled fuel below the injector valve. Results are presented to show that exhaust hydrocarbons and odor can be substantially reduced by minimizing the uncontrolled volume of fuel in the injector tip. The hydrocarbon emissions are attributed to uncontrolled fuel being pushed from the tip by expansion of the fuel at elevated temperatures. This conclusion is supported by test results with fuels having different 10% distillation temperatures.
Technical Paper

Some Effects of Fuel Injection System Parameters on Diesel Exhaust Emissions

1971-02-01
710671
The products of diesel combustion, including hydrocarbons, nitric oxide, carbon monoxide, and exhaust smoke are being controlled by current and future emission standards of federal and state governments. Fuel injection parameters, including tip design, injection timing, rate of injection, and the number and size of tip orifices were investigated with the unit injector, used in Detroit Diesel engines, for influence on these emissions. Results are presented to show control of hydrocarbon emissions by injector tip design. Reduction in nitric oxide emissions by changing injection parameters is limited by increased exhaust smoke and carbon monoxide and losses in fuel economy. Emission levels with the standard injector and an experimental injector, combining several injection parameter revisions, are compared with the 1973 California emission standards for diesel engines.
Technical Paper

Cooperative Evaluation of Techniques for Measuring Diesel Exhaust Odor Using the Diesel Odor Analysis System (DOAS)

1980-02-01
800422
The CRC-APRAC CAPI-1-64 Odor Panel was formed in 1973 to assess an instrumental measurement system for diesel exhaust odor (DOAS) developed under CRC-APRAC CAPE-7-68 by Arthur D. Little, Inc. Four cooperative studies were conducted by nine participating laboratories using common samples. The objectives of these studies were to define the DOAS system variables and to validate and improve the sampling and collection procedures. A fifth study, serving as a review of each analysis step, showed that analysis of common derived odorant samples could be conducted within acceptable limits by the participating laboratories. Three in-house sampling system design and operating parameter studies were conducted simultaneously with the cooperative work. The combined findings from the in-house and cooperative studies led to a tentative recommended procedure for measuring diesel exhaust odor.
X