Refine Your Search

Search Results

Viewing 1 to 6 of 6
Technical Paper

Mechanism of Road Side NOx Pollution Exhausted by On-Road Driving Diesel Vehicle - Comparison between Vehicle Adopted for New Long Term Regulation and Vehicle Adopted for Long Term Regulation Using On-board Measurement System

2010-10-25
2010-01-2277
Nitrogen oxides, collectively called NOx, from diesel vehicles are considered to be accumulated by particular area of roadsides, so-called "Hot-spot," and result in harmful influence to pedestrians and residents by roadsides. Japanese regulations over emissions of diesel vehicles have been tightened year by year and adopting regulations, emissions in mode test on chassis dynamometer or engine dynamometer have reduced. In this research, it was investigated the effect of introduce of transient mode test, Japanese JE05 mode, to NOx emission in real world and to roadside NOx pollution by road test using on-board measurement system. As test vehicles, 2 ton diesel vehicle which is adopted for Long Term Regulation (steady-state mode test, Diesel 31 mode test, 1998) and 3 ton diesel vehicle adopted for New Long Term Regulation (transient mode test, Japanese JE05 mode, 2005) with on-board measurement system was used.
Technical Paper

Analysis of the Effect of Charge Inhomogeneity on HCCI Combustion by Chemiluminescence Measurement

2004-06-08
2004-01-1902
In the HCCI Engine, inhomogeneity in fuel distribution and temperature in the pre-mixture exists microscopically, and has the possibility of affecting the ignition and combustion process. In this study, the effect of charge inhomogeneity in fuel distribution on the HCCI combustion process was investigated. Two-dimensional images of the chemiluminescence were captured by using a framing camera with an optically accessible engine in order to understand the spatial distribution of the combustion. DME was used as a test fuel. By changing a device for mixing air and fuel in the intake manifold, inhomogeneity in fuel distribution in the pre-mixture was varied. The result shows that luminescence is observed in a very short time in a large part of the combustion chamber under the homogeneous condition, while luminescence appears locally with considerable time differences under the inhomogeneous condition.
Technical Paper

Basic Research on the Suitable Fuel for HCCI Engine From the Viewpoint of Chemical Reaction

2005-04-11
2005-01-0149
In this study, attention was paid to the method of mixing fuel to solve one of problems of the HCCI engine, which is the avoidance of knocking. The objectives of the work reported in this paper were to research the characteristics of HCCI combustion of the Methane/DME/air pre-mixture in the experiment and to check the oxidation reaction in two cases: when DME was used as an ignition accelerator for the Methane/air pre-picture, and when Hydrogen was used as ignition accelerator. Furthermore, from these results reference was made about basic specifications required fuel for an HCCI engine.
Technical Paper

Research of Fuel Components to Expand lean-limit in Super lean-burn condition

2019-12-19
2019-01-2257
The thermal efficiency of internal combustion engines can be improved dramatically with the right combination of engine technology and fuel technology. Super lean-burn technology is attracting attention as a means of boosting thermal efficiency. However, there is a limit to how lean a fuel-air mixture can be before combustion becomes unstable or misfire occurs. The authors evaluated the effects of various chemical compositions on the lean limit under super lean-burn conditions. By changing the composition of the fuel, it was possible to achieve excess air ratios of over 2.0, resulting in high thermal efficiency.
Technical Paper

An Investigation of the Potential of Thermal and Mixing Stratifications for Reducing Pressure Rise Rate on HCCI Combustion by using Rapid Compression Machine

2009-11-03
2009-32-0085
Thermal and mixing stratifications have been thought as one of the ways to avoid an excessive pressure rise on HCCI combustion. The purpose of this research is to investigate the potential of thermal and mixing stratifications for reducing PRR (Pressure Rise Rate) on HCCI combustion. The pre-mixture with thermal and mixing stratifications is charged in RCM (Rapid Compression Machine). After that, the pre-mixture is compressed and in that process, in-cylinder gas pressure and chemiluminescence images are obtained and analyzed. Furthermore, experimental results are compared with the computational results calculated by using multi-zone model for analyzing these mechanisms.
Technical Paper

A Study of Fuel and EGR Stratification to Reduce Pressure-Rise Rates in a HCCI Engine

2013-10-15
2013-32-9070
Problem of HCCI combustion is knocking due to a steep heat release by the ignition that is occurred in each local area at the same time. It is considered that dispersion of auto-ignition timing at each local area in the combustion chamber is necessary to prevent this problem. One of technique of this solution is to make thermal stratification. It could be made by using two-stage ignition fuel, which has large heat release at low temperature reaction. Dispersion of fuel concentration leads to difference of temperature histories while combustion phasing is dispersed at each local area. Also, EGR gas stratification could make difference of temperature histories at each local area because of that of the characteristics. This study examines the effect of mixing stratification by stratifying the charge of fuel and CO2. A single-cylinder engine equipped with optical access was used in experiments, and numerical analysis was executed.
X