Refine Your Search

Topic

Search Results

Viewing 1 to 12 of 12
Journal Article

Development of Dual Fuel (Diesel-CNG) Engine for SUV Application in India

2015-01-14
2015-26-0058
Towards the effort of reducing pollutant emissions, especially soot and nitrogen oxides, from direct injection Diesel engines, engineers have proposed various solutions, one of which is the use of a gaseous fuel as a partial supplement for liquid Diesel fuel. These engines are known as dual fuel combustion engines. A dual fuel (Diesel-CNG) engine is a base diesel engine fitted with a dual fuel conversion kit to enable use of clean burning alternative fuel like compressed natural gas. In this engine diesel and natural gas are burned simultaneously. Natural gas is fed into the cylinder along with intake air; the amount of diesel injection is reduced accordingly. Dual fuel engines have number of potential advantages like fuel flexibility, higher compression ratio, and better efficiency and less modifications on existing diesel engines. It is an ecological friendly technology due to lower PM and smoke emissions and retains the efficiency of diesel combustion.
Technical Paper

Development of Dual Fuel (Diesel + CNG) Engine for Off-Road Application

2021-09-22
2021-26-0119
The evolution of engine technology has so far seen the most beneficial side of progress in the fields of transportation, agriculture, and mobility. With the advent of innovation, there is also an impact on our environment that needs to be balanced. This is where fuels like CNG, LPG, LNG, etc. outperform conventional fossil fuels in terms of pollution & operational cost. This paper enlightens on the use of innovative dual-fuel technology where diesel & CNG fuels are used for combustion simultaneously inside the combustion chamber. Dual fuel system adaptation for farm application ensures self-reliance of the farmer where he can generate Bio-CNG to use the renewable fuel for farming making him less dependent on conventional fossil fuel thus promoting a green economy. The dual-fuel system is adapted to the existing in-use diesel engine with minimum modifications. This makes it feasible to retrofit a CNG fuel system on an existing diesel engine to operate it on dual fuel mode.
Technical Paper

Chemical Profiling of Exhaust Particulate Matter from Indian In-Service Vehicles

2021-09-22
2021-26-0192
Particulate matter is one of the major pollutant responsible for deteriorating air quality, particularly in urban centers. Information on contributing sources with the share from different sources is a first and one of the important steps in controlling pollution. Diverse sources, anthropogenic as well as natural, like industries, transport, domestic burning, construction, wind-blown dust, road dust contribute to particulate matter pollution. Receptor modeling is a scientific method which is utilized for assessment of the contribution of various sources based on chemical characteristics of particulate matter sources and ambient air particulate matter. Representative data of fractions of various chemical species in the particulate matter from the different sources i.e. source fingerprint is an essential input for the receptor modeling approach.
Technical Paper

Multi Axis Fatigue Test of Lift Axle Assembly through Real Time Simulation Abstract

2021-09-22
2021-26-0486
This paper discusses the test setup and methodology required to validate complete lift axle assembly for simulating the real time test track data. The correlation of rig vs track is discussed. The approach for reduction of validation time by eliminating few of the non-damaging tracks/events, its correlation with real life condition is discussed, and details are presented. With increased competition, vehicle development time has reduced drastically in recent past. Bench test procedure using accelerated test cycle discussed in this paper will help to reduce development time and cost. Process briefed in this paper can also be used for similar test specification for other structural parts or complete suspension system of heavy commercial vehicles.
Technical Paper

Simulation Methodology for Duty Cycle based Fuel Consumption Calculation for Heavy Commercial Vehicles

2021-09-22
2021-26-0221
Automobile industry is facing challenges in the field of technological innovation and achieving minimum Total Cost of Ownership (TCO) despite rise in fuel prices. To overcome these challenges is certainly a challenging task. In doing so, automobile sector is mainly focused on passenger safety, comfort, reliability, meeting stringent emission norms, and above all reducing the vehicle fuel consumption. Referring to the Paris climate agreement, and India’s commitment to reduce the CO2 intensity by 33% - 35% by 2030 below the 2005 levels [1], it is imperative to lay down strong policies and procedure to curb the fuel consumption to contribute for reduction in carbon foot print and oil imports. Transportation sector is majorly responsible for the GHG Emission of which the CO2 emission from commercial vehicles is nearly 73% [2], although the total sales of commercial vehicles are around 4% of cumulative vehicle sales.
Technical Paper

Simulation based Verification & Validation of AEBS

2021-09-22
2021-26-0128
ADAS and AV technologies are going to disrupt the entire transportation industry, as we know it, with a profound impact on human life. They promise to enhance human lives by providing a safer and much more accessible transportation ecosystem to all of society. However, to deliver on all of its promises, they need to be at least as good as a ‘good’ human driver. Therefore, they need to be very safe and robust, with the ability to perform in a variety of driving scenarios, and be very secure, being immune from any external cyberattacks. Hence, such technologies need to be tested very extensively. However, from various studies, it has been found that, to declare a full AV as good as a human driver, the AV will be required to drive more than a billion miles on real roads, taking tens and sometimes hundreds of years to drive those miles, considering even the most aggressive testing assumptions.
Technical Paper

Comparative Performance Analysis of Single Cylinder Automobile Engine by Using LPG and CNG as Fuel

2008-09-09
2008-32-0024
The ever-increasing energy demand is a prime concern of entire world. As gasoline prices soar and concern over harmful emissions mount, vehicles which run on alternate fuel sources like LPG and CNG are becoming increasingly important. In this experimental study single cylinder pickup van engine was tested as per IS 14599 by using LPG and CNG as fuel. Ordinary fuel for vehicle is gasoline. Full throttle performance was tested at different speeds on computerized engine test set up with data acquisition system and AVL eddy current dynamometer. Important performance characteristic curves have been investigated and compared in CNG mode and LPG mode. Curve fitting has been done and equations with regression coefficient have been derived. Statistical analysis for different engine parameters has been done in LPG and CNG mode by using matlab software. It was observed that maximum power and maximum torque in LPG mode was more than that in CNG mode.
Technical Paper

A Method to Calculate the Natural Frequency of the Timing Belt Drive

2011-10-06
2011-28-0140
A method to calculate the Natural frequency of the Timing belt drive is developed and validated. Timing belt drives are widely used in the automotive engines for valve actuation drives where accurate motion and force transmission is utmost necessary. Natural frequency is an important parameter to understand the vibration behavior of a system. Previous studies have found the Natural frequency and frequency response of the timing belt with experimental method and with FEA/ MBD software. In this study attempt has been made to develop a tool which will require basic material properties to calculate the natural frequency. Complete timing belt drive system is divided into set of standard components/elements. The belt tooth is divided in four layers and stiffness calculation is based on apparent modulus of elasticity derived from form factor. For belt pulley tooth analogy with cantilever beam is used.
Technical Paper

Electro-Pneumatic Shifting System and Gear Control Unit for a Sequential Gearbox

2016-02-01
2016-28-0175
This paper describes the design methodology and algorithm development towards the design of an automatic external gear-shifting and clutch-actuation system for a sequential gearbox with the aim of providing the drivers with easier and an efficient means of shifting gears. Automatically actuated manual transmission system bridges the gap between automatic and manual transmissions which provides the advantages of both type of transmissions. This would ideally leads to faster shifting time and provide significant benefits in the form of electronic-aids like launch control and traction control. Removal of mechanical clutching would reduce fatigue and lead to ergonomic benefit. Based on the benchmarking performed on an easily available ready-to-install aftermarket alternative, options will be considered for the actuating mechanism and the most feasible will be used to develop a shifting system.
Technical Paper

Optimizing and Validating the Engine Performance and Emission Parameters on Engine Dynamometer through 1D Simulation of a Multi-Cylinder CNG Engine

2016-02-01
2016-28-0102
Environmental pollution has proven to be a big threat to our eco-system and pollution from automobiles using conventional fuels is a major contributor to this. Alternative fuels are the only immediate option that can help us counter the ever rising environmental pollution. In today’s date we cannot directly replace an IC engine, so the most efficient option available is using a fuel that can work with the IC engines other than gasoline and diesel. CNG proves to be the most promising fuel. A diesel engine converted to stoichiometric CNG engine was used for optimization. The paper deals with the improvement of engine power from 50HP to 60HP and up-gradation of the emission from BS-III to BS-IV norms of a multi-cylinder naturally aspirated engine. This was achieved by varying the compression ratio, valve-lift profile, intake plenum volume, runner length, spark-advance timing, fuel injection location, exhaust pipe length and catalytic converter selection.
Journal Article

Evaluating Influence of On-Road Parameter Variation in HD Application Using Virtual Approach for Upcoming IRDE Norms

2021-09-22
2021-26-0405
Real Driving Emission (RDE) norms have changed the way vehicles are required to be calibrated and developed. This has moved the legislative requirements from predictable lab conditions to more realistic, real world conditions. Current Indian legislation allows certification for Heavy Duty (HD) applications on engine level and therefore decoupled from vehicle and the real world scenarios such as uncertainty and randomness in driver behavior, traffic conditions, road profiles, ambient conditions etc. which are not captured. Upcoming RDE legislation to be implemented in year 2023, has made it necessary to integrate engine with vehicle to consider the impact of various parameters on engine operating points and therefore on tail pipe emissions. This paper focusses upon the methodology developed using RDE cycle generator tool (RCG) for generating on-road parameters which influences the zone of engine operation and resulting emission levels.
Journal Article

Development of Generic Frame Testing Methodology by Synthetic Drive File Generation Technique

2021-09-22
2021-26-0444
Frame is one of the vital part of Light & Heavy Commercial vehicle which holds all the parts and testing the frame is not a cost effective as the complete vehicle assembly needs to be tested as the individual testing of frame is not formulated for testing. In the development stage of the vehicle we always seek for a quick, cost effective and reliable methodology so that any modification can be made by identifying the failures. In this paper we have addressed this problem by developing a generic frame test methodology by which the frame can be tested in the preliminary stage of development in a cost effective way and reliable way. The Multi Body Dynamics Simulation was carried out and rig was designed comprising of servo hydraulic actuators. The frame was instrumented to acquire the Field, Event and Torture track data for the formulation and verification of the synthetic drives.
X