Refine Your Search

Topic

Author

Search Results

Journal Article

Dedicated GTL Vehicle: A Calibration Optimization Study

2010-04-12
2010-01-0737
GTL (Gas-To-Liquid) fuel is well known to improve tailpipe emissions when fuelling a conventional diesel vehicle, that is, one optimized to conventional fuel. This investigation assesses the additional potential for GTL fuel in a GTL-dedicated vehicle. This potential for GTL fuel was quantified in an EU 4 6-cylinder serial production engine. In the first stage, a comparison of engine performance was made of GTL fuel against conventional diesel, using identical engine calibrations. Next, adaptations enabled the full potential of GTL fuel within a dedicated calibration to be assessed. For this stage, two optimization goals were investigated: - Minimization of NOx emissions and - Minimization of fuel consumption. For each optimization the boundary condition was that emissions should be within the EU5 level. An additional constraint on the latter strategy required noise levels to remain within the baseline reference.
Journal Article

Damping A Passenger Car With A Gyroscopic Damper System

2015-04-14
2015-01-1506
Today, body vibration energy of passenger cars gets dissipated by linear working shock absorbers. A new approach substitutes the damper of a passenger car by a cardanic gimbaled flywheel mass. The constructive design leads to a rotary damper in which the vertical movement of the wheel carrier leads to revolution of the rotational axis of the flywheel. In this arrangement, the occurring precession moments are used to control damping moments and to store vibrational energy. Different damper characteristics are achieved by different induced precession. From almost zero torque output to high torque output, this damper has a huge spread. Next to the basic principal, in this paper an integration in the chassis, including a constructive proposal is shown. A conflict with high torque and high angular velocity leads to a special design. Moreover concepts to deal with all vehicle situations like yawing, rolling and pitching are shown.
Journal Article

Comparative Analysis of Tire Evaluation Methods for an indirect Tire Pressure Monitoring System (iTPMS)

2015-04-14
2015-01-1519
Starting from the USA and followed by the European Union, legal requirements concerning “Tire Pressure Monitoring Systems” (TPMS) for passenger cars and light trucks will be introduced in China as well and therefore in the third of the three largest automobile markets worldwide. Changes of pressure dependent physical tire properties such as dynamic roll radius and a certain tire eigenfrequency, which are included in the ESC-wheel speed signals, indicates pressure loss in an indirect manner. Systems with corresponding working principles are called “indirect Tire Pressure Monitoring System” (iTPMS). Since the tire is a structural element with varying characteristics according to the design parameters, the roll radius and frequency behavior due to pressure loss is variable as well. As a consequence, tires have to be evaluated regarding there compatibility to iTPMS during the vehicle development process.
Journal Article

Obtaining Diagnostic Coverage Metrics Using Rapid Prototyping of Multicore Systems

2011-04-12
2011-01-1007
With the introduction of the ISO26262 automotive safety standard there is a burden of proof to show that the processing elements in embedded microcontroller hardware are capable of supporting a certain diagnostic coverage level, depending on the required Automotive Safety Integrity Level (ASIL). The current mechanisms used to provide actual metrics of the Built-in Self Tests (BIST) and Lock Step comparators use Register Transfer Level (RTL) simulations of the internal processing elements which force faults into individual nodes of the design and collect diagnostic coverage results. Although this mechanism is robust, it can only be performed by semiconductor suppliers and is costly. This paper describes a new solution whereby the microcontroller is synthesized into a large Field Programmable Gate Array (FPGA) with a test controller on the outside.
Technical Paper

Basic Single-Microcontroller Monitoring Concept for Safety Critical Systems

2007-04-16
2007-01-1488
Electronic Control Units of safety critical systems require constant monitoring of the hardware to be able to bring the system to a safe state if any hardware defects or malfunctions are detected. This monitoring includes memory checking, peripheral checking as well as checking the main processor core. However, checking the processor core is difficult because it cannot be guaranteed that the error will be properly detected if the monitor function is running on a processing system which is malfunctioning. To circumvent this issue, several previously presented monitoring concepts (e.g. SAE#2006-01-0840) employ a second external microprocessor to communicate with the main processor to check its integrity. The addition of a second microcontroller and the associated support circuitry that is required adds to the overall costs of the ECU, increases the size and creates significant system complexity.
Technical Paper

Implementation of a Basic Single-Microcontroller Monitoring Concept for Safety Critical Systems on a Dual-Core Microcontroller

2007-04-16
2007-01-1486
Electronic Control Units of safety critical systems require constant monitoring of the hardware to be able to bring the system to a safe state if any hardware defects or malfunctions are detected. This monitoring includes memory checking, peripheral checking as well as checking the main processor core. However, checking the processor core is difficult because it cannot be guaranteed that the error will be properly detected if the monitor function is running on a processing system which is malfunctioning. To circumvent this issue, several previously presented monitoring concepts (e.g. SAE#2006-01-0840) employ a second external microprocessor to communicate with the main processor to check its integrity. This paper will present a concept which maps the functions of the external monitoring unit into an internal second processing core which are frequently available on modern, 32bit, monolithic, dual-core microcontrollers.
Technical Paper

Encapsulation of Software-Modules of Safety-Critical Systems

2007-04-16
2007-01-1485
More and more high-level algorithms are emerging to improve the existing systems in a car. Often these algorithms only need a platform with a bus connection and some resources such as CPU time and memory space. These functions can easily be integrated into existing systems that have free resources. This paper describes some encapsulation techniques and mechanisms that can be used in the automotive domain. The discussion also takes into account the additional resources consumed on the microcontroller to meet these requirements and by the software to implement the encapsulation mechanisms. Overviews of some general concepts of software-architectures that provide encapsulation are also shown.
Technical Paper

End-To-End Protection for SIL3 Requirements in a FlexRay Communication System

2008-04-14
2008-01-0112
This paper proposes end-to-end protection mechanisms to be added to a generic FlexRay network in order to achieve fault detection and integrity levels sufficient for a SIL3 fail safe communication system. The mechanisms are derived from the random hardware failure modes to be considered for communication controllers according to IEC 61508. Mechanisms provided by the FlexRay protocol are pointed out. Additional features necessary to fulfil the requirements are discussed. It is shown how to calculate the failure rate probabilities of the CRC used as a safety code with respect to EN 50159.
Technical Paper

Helmholtz Resonators Acting as Sound Source in Automotive Aeroacoustics

2009-04-20
2009-01-0183
Helmholtz-resonators are discussed in technical acoustics normally in conjunction with attenuation of sound, not with amplification or even production of sound. On the other hand everybody knows the sound produced by a bottle, when someone blows over the orifice. During the investigation of the sound produced in body gaps it was found that the underlying flow physics are closely related to the Helmholtz-resonator. But different from the typical Helmholtz-resonator generated noise – as for example the blown bottle or, from the automotive world, the sun roof buffeting – there is no fluid resonance involved in the process. For body gaps the random pressure fluctuation of the turbulent boundary layer is sufficient to excite the acoustic resonance in the cavity. The sound generation is characterized by a continuous rise in sound pressure level with increasing velocity, the rise is proportional to U with varying exponents.
Technical Paper

Timing Protection in Multifunctional and Safety-Related Automotive Control Systems

2009-04-20
2009-01-0757
With the ever increasing amount of available software processing resources in a vehicle, more and more high-level algorithms are emerging to improve the existing systems in a car. Often these algorithms only need a platform with a bus connection and some resources such as processing power and memory space. These functions are predestined to be integrated into existing systems that have free resources. This paper will examine the role of time protection in these multi-algorithm systems and describe what timing protection means and why it is required. The processing time will be partitioned to the different processing levels like interrupts, services and tasks. The problems of timing protection will be illustrated as well as its limitations. The conflict between real-time requirements and timing protection will be shown. Finally Autosar will be examined with focus on timing protection and applicability in actual development projects.
Technical Paper

Correction of Nozzle Gradient Effects in Open Jet Wind Tunnels

2004-03-08
2004-01-0669
In open jet wind tunnels with high blockage ratios a sharp rise in drag is observed for models approaching the nozzle exit plane. The physical background for this rise in drag will be analyzed in the paper. Starting with a basic analysis of the dependencies of the effect on model and wind tunnel properties, the key parameters of the problem will be identified. It will be shown using a momentum balance and potential flow theory that interaction between model and nozzle exit can result in significant tunnel-induced gradients at the model position. In a second step, a CFD-based investigation is used to show the interaction between nozzle exit and a bluff body. The results cover the whole range between open jet and closed wall test section interaction. The model starts at a large distance from the nozzle, then moves towards the nozzle, enters the nozzle and is finally completely inside the nozzle.
Technical Paper

Production of Autobody Components with Hydromechanical Sheet Forming (AHU®)

2002-07-09
2002-01-2026
The lightweight construction strategies that are demanded by the automobile industry are being employed more and more. These strategies lead to the increasing importance of the forming method and types of materials used. Especially forming technologies based on liquid media have the potential to meet these demands. These forming technologies make it possible to produce parts that have both, more complex geometries and optimized characteristics. This forming technology constitutes an intelligent process management including the significant materials parameters and behavior, the simulation and some new developments especially for the optimization of the quality and the cycle time. Hydromechanical sheet forming (AHU®) is an alternative production (forming) process, with very interesting results and developments for the manufacture of specific automobile components.
Technical Paper

Gradient Effects on Drag Due to Boundary-Layer Suction in Automotive Wind Tunnels

2003-03-03
2003-01-0655
A region with floor boundary-layer suction upstream of the vehicle to remove the oncoming boundary layer is often used in automotive wind tunnels. These suction systems inevitably change the empty-tunnel pressure gradient. In this paper, the empty-tunnel pressure gradient created by the use of boundary layer suction and its effect on measured drag are investigated. By using excess suction - more suction than necessary to remove the floor boundary layer – it was possible to show experimentally that the major part of the drag increase due to boundary layer suction is created by unintended gradient effects. Only a minor part of the drag increase is due to the increased flow velocities at the lower parts of the vehicle, or in other words, due to the improved ground simulation. A theoretical model, using the concept of horizontal buoyancy to predict the gradient effect, is proposed. The model is compared to the experimental results as well as to CFD calculations.
Technical Paper

Reference Static and Dynamic Pressures in Automotive Wind Tunnels

2003-03-03
2003-01-0428
The reference pressures are determined in automotive wind tunnels by measurement of pressures and pressure differences at upstream positions along the wind tunnel nozzle. For closed wall wind tunnels usually the so called nozzle method is used, where the volume flux is calculated from a pressure difference measured at the nozzle contour and a calibration factor determined in the empty test section. For open jet wind tunnels a choice is available between nozzle and plenum method. For the plenum method the reference static pressure is taken from the plenum chamber and the dynamic pressure also refers to the plenum conditions. The static reference pressure in closed wall tunnels is calculated by subtracting the dynamic pressure from the total pressure in the settling chamber. In this paper, the definitions and the differences between the two methods are discussed in detail.
Technical Paper

Cyber Security in the Automotive Domain – An Overview

2017-03-28
2017-01-1652
Driven by the growing internet and remote connectivity of automobiles, combined with the emerging trend to automated driving, the importance of security for automotive systems is massively increasing. Although cyber security is a common part of daily routines in the traditional IT domain, necessary security mechanisms are not yet widely applied in the vehicles. At first glance, this may not appear to be a problem as there are lots of solutions from other domains, which potentially could be re-used. But substantial differences compared to an automotive environment have to be taken into account, drastically reducing the possibilities for simple reuse. Our contribution is to address automotive electronics engineers who are confronted with security requirements. Therefore, it will firstly provide some basic knowledge about IT security and subsequently present a selection of automotive specific security use cases.
Technical Paper

Field Effectiveness Calculation of Integrated Safety Systems

2011-04-12
2011-01-1101
The potential of determining the change of injury severity in the accident event taking passive as well as active measures into account at the vehicle (integral systems) are at present limited to pedestrian protective systems. Therefore, an extension of the existing methods for the application with common integral systems (front protection, side protection, etc.) is suggested. Nowadays the effectiveness of passive safety systems is determined in crash tests with very high accident severities. However, approximately 90% of real-world accidents have a lower accident severity as the required crash tests. Thus, this paper will present a method calculating the effectiveness of such an integral system based on real-world accident data. For these reasons, this paper is presenting a method for a more valid prediction of injury severity. The German In-Depth Database GIDAS allows clustering the accident event in relevant car-to-car scenarios.
Technical Paper

Leveraging Hardware Security to Secure Connected Vehicles

2018-04-03
2018-01-0012
Advanced safety features and new services in connected cars depend on the security of the underlying vehicle functions. Due to the interconnection with the outside world and as a result of being an embedded system a modern vehicle is exposed to both, malicious activities as faced by traditional IT world systems as well as physical attacks. This introduces the need for utilizing hardware-assisted security measures to prevent both kinds of attacks. In this paper we present a survey of the different classes of hardware security devices and depict their different functional range and application. We demonstrate the feasibility of our approach by conducting a case study on an exemplary implementation of a function-on-demand use case. In particular, our example outlines how to apply the different hardware security approaches in practice to address real-world security topics. We conclude with an assessment of today’s hardware security devices.
Technical Paper

Virtual Optimization of Race Engines Through an Extended Quasi Steady State Lap Time Simulation Approach

2018-04-03
2018-01-0587
Minimizing the lap time for a given race track is the main target in racecar development. In order to achieve the highest possible performance of the vehicle configuration the mutual interaction at the level of assemblies and components requires a balance between the advantages and disadvantages for each design decision. Especially the major shift in the focus of racecar powerunit development to high efficiency powertrains is driving a development of lean boosted and rightsized engines. In terms of dynamic engine behavior the time delay from requested to provided torque could influence the lap time performance. Therefore, solely maximizing the full load behavior objective is insufficient to achieve minimal lap time. By means of continuous predictive virtual methods throughout the whole development process, the influence on lap time by dynamic power lags, e.g. caused by the boost system, can be recognized efficiently even in the early concept phase.
Technical Paper

Acoustic Investigations of HVAC Systems in Vehicle

2012-04-16
2012-01-1185
New power train concepts in the automobile industry will decisively change the familiar car acoustics. Secondary acoustic noise sources will be unmasked and dominate the driver's sound experience. The most important secondary noise source is the air conditioning (AC) system. Before a favorable AC sound can actively be designed, it is necessary to identify the acoustic noise sources and find means to influence them. This paper focuses on the AC outlet module which is, apart from the control unit, the only part visible to the customer. Typical acoustic spectra of flowed-through outlets show a characteristic tonality at about 3000 Hz. The knowledge of its aeroacoustic source mechanisms, the inherent implications for the customer and corrective measures especially in automobile surroundings has been limited so far. To analyze this phenomenon in detail, a simplified model outlet that shows the basic aeroacoustic behavior of a series production outlet was constructed and investigated.
Technical Paper

Audi Aero-Acoustic Wind Tunnel

1993-03-01
930300
The present paper reveals the design concept as well as results of experimental investigations, which were conducted in the early design stage of the planned AUDI Aero-Acoustic Wind Tunnel. This low-noise open-jet facility, featuring a nozzle exit area of 11 m2 and a top speed of approximately 60 m/s, enables aerodynamic as well as acoustic testing of both, full-scale and model-scale ground vehicles. Ground simulation is provided by means of a moving-belt rig. The surrounding plenum is designed as a semi-anechoic chamber to simulate acoustic free-field conditions around the vehicle. Fan noise will be attenuated below the noise level of the open jet. The work reported herein, comprises 1/8-scale pilot-tunnel experiments of aerodynamic and acoustic configurations which were carried out at the University of Darmstadt.
X