Refine Your Search

Search Results

Viewing 1 to 11 of 11
Technical Paper

Helmholtz Resonators Acting as Sound Source in Automotive Aeroacoustics

2009-04-20
2009-01-0183
Helmholtz-resonators are discussed in technical acoustics normally in conjunction with attenuation of sound, not with amplification or even production of sound. On the other hand everybody knows the sound produced by a bottle, when someone blows over the orifice. During the investigation of the sound produced in body gaps it was found that the underlying flow physics are closely related to the Helmholtz-resonator. But different from the typical Helmholtz-resonator generated noise – as for example the blown bottle or, from the automotive world, the sun roof buffeting – there is no fluid resonance involved in the process. For body gaps the random pressure fluctuation of the turbulent boundary layer is sufficient to excite the acoustic resonance in the cavity. The sound generation is characterized by a continuous rise in sound pressure level with increasing velocity, the rise is proportional to U with varying exponents.
Technical Paper

Active Suppression of Buffeting at the Audi AAWT: Operational Experiences and Enhancements of the Control Scheme

2004-03-08
2004-01-0804
In order to suppress the well-documented low frequency pressure fluctuations in open jet wind tunnels, termed ‘wind tunnel buffeting’, an Active Resonance Control (ARC) System was implemented in the Audi aero-acoustic wind tunnel several years ago. This ARC-Sys-tem reduces the periodic pressure fluctuations by up to 23 dB and completely eliminates the periodic velocity fluctuations using a simple feedback control scheme. To set up the ARC system in practice, the system's parameters are optimised once for each critical flow velocity, when the vortex shedding frequency coincides with an acoustic resonance mode of the wind tunnel. Due to the fact that both frequency and amplitude of the excited resonances not only depend on flow velocity but also on other parameters such as collector position and test-car geometry, the system has to be adjusted with regard to each of these cases.
Technical Paper

Gradient Effects on Drag Due to Boundary-Layer Suction in Automotive Wind Tunnels

2003-03-03
2003-01-0655
A region with floor boundary-layer suction upstream of the vehicle to remove the oncoming boundary layer is often used in automotive wind tunnels. These suction systems inevitably change the empty-tunnel pressure gradient. In this paper, the empty-tunnel pressure gradient created by the use of boundary layer suction and its effect on measured drag are investigated. By using excess suction - more suction than necessary to remove the floor boundary layer – it was possible to show experimentally that the major part of the drag increase due to boundary layer suction is created by unintended gradient effects. Only a minor part of the drag increase is due to the increased flow velocities at the lower parts of the vehicle, or in other words, due to the improved ground simulation. A theoretical model, using the concept of horizontal buoyancy to predict the gradient effect, is proposed. The model is compared to the experimental results as well as to CFD calculations.
Technical Paper

Reference Static and Dynamic Pressures in Automotive Wind Tunnels

2003-03-03
2003-01-0428
The reference pressures are determined in automotive wind tunnels by measurement of pressures and pressure differences at upstream positions along the wind tunnel nozzle. For closed wall wind tunnels usually the so called nozzle method is used, where the volume flux is calculated from a pressure difference measured at the nozzle contour and a calibration factor determined in the empty test section. For open jet wind tunnels a choice is available between nozzle and plenum method. For the plenum method the reference static pressure is taken from the plenum chamber and the dynamic pressure also refers to the plenum conditions. The static reference pressure in closed wall tunnels is calculated by subtracting the dynamic pressure from the total pressure in the settling chamber. In this paper, the definitions and the differences between the two methods are discussed in detail.
Technical Paper

Measurement of Reference Dynamic Pressure in Open-Jet Automotive Wind Tunnels

1992-02-01
920344
In automotive open-jet wind tunnels reference velocity is usually measured in terms of a static pressure difference between two different cross-sectional areas of the tunnel. Most commonly used are two sections within the nozzle (Method 1: ΔP-Nozzle). Sometimes, the reference velocity is deduced from the static pressure difference between settling chamber and plenum (Method 2: ΔP-Plenum). Investigations in three full-scale open-jet automotive wind tunnels have clearly shown that determination of reference dynamic pressure according to ΔP-Plenum is physically incorrect. Basically, all aerodynamic coefficients, including drag coefficient, obtained by this method are too low. For test objects like cars and vans it was found that the error ΔcD depends on the test object's drag blockage in an open-jet wind tunnel.
Technical Paper

A Two-Measurement Correction for the Effects of a Pressure Gradient on Automotive, Open-Jet, Wind Tunnel Measurements

2006-04-03
2006-01-0568
This paper provides a method that corrects errors induced by the empty-tunnel pressure distribution in the aerodynamic forces and moments measured on an automobile in a wind tunnel. The errors are a result of wake distortion caused by the gradient in pressure over the wake. The method is applicable to open-jet and closed-wall wind tunnels. However, the primary focus is on the open tunnel because its short test-section length commonly results in this wake interference. The work is a continuation of a previous paper [4] that treated drag only at zero yaw angle. The current paper extends the correction to the remaining forces, moments and model surface pressures at all yaw angles. It is shown that the use of a second measurement in the wind tunnel, made with a perturbed pressure distribution, provides sufficient information for an accurate correction. The perturbation in pressure distribution can be achieved by extending flaps into the collector flow.
Technical Paper

Hardware Based Paravirtualization: Simplifying the Co-Hosting of Legacy Code for Mixed Criticality Applications

2013-04-08
2013-01-0186
The increased pressure for power, space, and cost reduction in automotive applications together with the availability of high performance, automotive qualified multicore microcontrollers has lead to the ability to engineer Domain Controller ECUs that can host several separate applications in parallel. The standard automotive constraints however still apply, such as use of AUTOSAR operating system, support for legacy code, hosting OEM supplied code and the ability to determine warranty issues and responsibilities between a group of Tier 1 and Tier 2 vendors who all provide Intellectual Property to the final production ECU. Requirements for safety relevant applications add even more complexity, which in most current approaches demand a reconfiguration of all basic software layers and a major effort to redesign parts of the application code to enable co-existence on the same hardware platform. This paper outlines the conflicting requirements of hosting multiple applications.
Technical Paper

Communication and Information Systems - A Comparison of Ideas, Concepts and Products

2000-03-06
2000-01-0810
How can car manufacturers, which are primary mechanical engineers, become software specialists? This is a question of prime importance for car electronics in the future. Modern vehicles offer a large number of electronic and software based functions to achieve a high level of safety, fuel economy, comfort, entertainment and security which are developed under pressure of regulations, of consumers needs and of competitive time to market aspects. This contribution draws a picture, what could be important in future for in car communication and information system in terms of development process, HW & SW architectures, partnerships in automotive industry and security of industrial properties. For this purpose the automotive development is reviewed and actual examples of system designs are given.
Technical Paper

Presenting a Fourier-Based Air Path Model for Real-Time Capable Engine Simulation Enhanced by a Semi-Physical NO-Emission Model with a High Degree of Predictability

2016-10-17
2016-01-2231
Longitudinal models are used to evaluate different vehicle-engine concepts with respect to driving behavior and emissions. The engine is generally map-based. An explicit calculation of both fluid dynamics inside the engine air path and cylinder combustion is not considered due to long computing times. Particularly for dynamic certification cycles (WLTC, US06 etc.), dynamic engine effects severely influence the quality of results. Hence, an evaluation of transient engine behavior with map-based engine models is restricted to a certain extent. The coupling of detailed 1D-engine models is an alternative, which rapidly increases the model computation time to approximately 300 times higher than that of real time. In many technical areas, the Fourier transformation (FT) method is applied, which makes it possible to represent superimposed oscillations by their sinusoidal harmonic oscillations of different orders.
Technical Paper

The BMW AVZ Wind Tunnel Center

2010-04-12
2010-01-0118
The new BMW Aerodynamisches Versuchszentrum (AVZ) wind tunnel center includes a full-scale wind tunnel, "The BMW Windkanal" and an aerodynamic laboratory "The BMW AEROLAB." The AVZ facility incorporates numerous new technology features that provide design engineers with new tools for aerodynamic optimization of vehicles. The AVZ features a single-belt rolling road in the AEROLAB and a five-belt rolling road in the Windkanal for underbody aerodynamic simulation. Each of these rolling road types has distinct advantages, and BMW will leverage the advantages of each system. The AEROLAB features two overhead traverses that can be configured to study vehicle drafting, and both static and dynamic passing maneuvers. To accurately simulate "on-road" aerodynamic forces, a novel collector/flow stabilizer was developed that produces a very flat axial static pressure distribution. The flat static pressure distribution represents a significant improvement relative to other open jet wind tunnels.
Journal Article

Novel Index for Evaluation of Particle Formation Tendencies of Fuels with Different Chemical Compositions

2017-08-18
2017-01-9380
Current regulatory developments aim for stricter emission limits, increased environmental protection and purification of air on a local and global scale. In order to find solutions for a cleaner combustion process, it is necessary to identify the critical components and parameters responsible for the formation of emissions. This work provides an evaluation process for particle formation during combustion of a modern direct injection engine, which can help to create new aftertreatment techniques, such as a gasoline particle filter (GPF) system, that are fit for purpose. With the advent of “real driving emission” (RDE) regulations, which include market fuels for the particulate number testing procedure, the chemical composition and overall quality of the fuel cannot be neglected in order to yield a comparable emission test within the EU and worldwide.
X