Refine Your Search

Topic

Author

Search Results

Technical Paper

Modular Transmission Family for Fuel Consumption Reduction Tailored for Indian Market Needs

2021-09-22
2021-26-0049
Global warming is the driver for introduction of CO2 and fuel consumption legislation worldwide. Indian truck manufacturers are facing the introduction of Indian fuel efficiency norms. In the European Union the CO2 emission monitoring phase of the most relevant truck classes was completed in June 2020 by usage of the Vehicle Energy Consumption Calculation TOol VECTO. Indian rule makers are currently considering an adaptation of VECTO for the usage in India, too. Indian truck market has always been very cost sensitive. Introduction of Bharat Stage VI Phase I has already led to a significant cost increase for emission compliance. Therefore, it will be of vital importance to keep the additional product costs for achievement of future fuel consumption legislation as low as possible as long as the real-world operation will not be promoted by the government.
Technical Paper

Root Cause Analysis and Structural Optimization of E-Drive Transmission

2020-09-30
2020-01-1578
This paper describes the simulation tool chain serving to design and optimize the transmission of an electric axle drive from concept to final design with respect to NVH. A two-stage transmission of an eAxle is designed from scratch by the initial layout of gears and shafts, including the optimization of gear micro geometry. After the shaft system and bearings are defined, the concept design of the transmission housing is evaluated with the help of a basic topology optimization regarding stiffness and certain eigenfrequencies. In the next step a fully flexible multi-body dynamic (MBD) and acoustic analysis of the transmission is performed using internally calculated excitations due to gear contact and bearing interaction with shaft and gear dynamics for the entire speed and load range. Critical operating conditions in terms of shaft dynamics, structure borne noise and noise radiation are evaluated and selected as target for optimization in the following steps.
Journal Article

Improved Modeling of Near-Wall Heat Transport for Cooling of Electric and Hybrid Powertrain Components by High Prandtl Number Flow

2017-03-28
2017-01-0621
Reynolds-averaged Navier-Stokes (RANS) computations of heat transfer involving wall bounded flows at elevated Prandtl numbers typically suffer from a lack of accuracy and/or increased mesh dependency. This can be often attributed to an improper near-wall turbulence modeling and the deficiency of the wall heat transfer models (based on the so called P-functions) that do not properly account for the variation of the turbulent Prandtl number in the wall proximity (y+< 5). As the conductive sub-layer gets significantly thinner than the viscous velocity sub-layer (for Pr >1), treatment of the thermal buffer layer gains importance as well. Various hybrid strategies utilize blending functions dependent on the molecular Prandtl number, which do not necessarily provide a smooth transition from the viscous/conductive sub-layer to the logarithmic region.
Technical Paper

A Modular Gasoline Engine Family for Hybrid Powertrains: Balancing Cost and Efficiency Optimization

2020-04-14
2020-01-0839
The electrification of the powertrain is a prerequisite to meet future fuel consumption limits, while the internal combustion engine (ICE) will remain a key element of most production volume relevant powertrain concepts. High volume applications will be covered by electrified powertrains. The range will include parallel hybrids, 48V- or High voltage Mild- or Full hybrids, up to Serial hybrids. In the first configurations the ICE is the main propulsion, requiring the whole engine speed and load range including the transient operation. At serial hybrid applications the vehicle is generally electrically driven, the ICE provides power to drive the generator, either exclusively or supporting a battery charging concept. As the ICE is not mechanically coupled to the drive train, a reduction of the operating range and thus a partial simplification of the ICE is achievable.
Journal Article

Definition of Gearshift Pattern: Innovative Optimization Procedures Using System Simulation

2011-04-12
2011-01-0395
Today's powertrains are becoming more and more complex due to the increasing number of gear box types requiring gearshift patterns like conventional (equipped with GSI) and automatic-manual transmissions (AT, AMT), double clutch and continuous variable transmissions (DCT, CVT). This increasing variety of gear boxes requires a higher effort for the overall optimization of the powertrain. At the same time, it is necessary to assess the impact of different powertrains and control strategies on CO₂ emissions very early in the development process. The optimization of Gear Shift Patterns (G.S.P.) has to fulfill multiple constraints in terms of objective customers' requirements, like driveability, NVH, performance, emissions and fuel consumption. For these reasons, RENAULT and AVL entered an engineering collaboration in order to develop a dedicated simulation tool: CRUISE GSP.
Journal Article

A Miniature Catalytic Stripper for Particles Less Than 23 Nanometers

2013-04-08
2013-01-1570
The European Emissions Stage 5b standard for diesel passenger cars regulates particulate matter to 0.0045 g/km and non-volatile part/km greater than 23 nm size to 6.0x10₁₁ as determined by the PMP procedure that uses a heated evaporation tube to remove semi-volatile material. Measurement artifacts associated with the evaporation tube technique prevents reliable extension of the method to a lower size range. Catalytic stripper (CS) technology removes possible sources of these artifacts by effectively removing all hydrocarbons and sulfuric acid in the gas phase in order to avoid any chemical reactions or re-nucleation that may cause measurement complications. The performance of a miniature CS was evaluated and experimental results showed solid particle penetration was 50% at 10.5 nm. The sulfate storage capacity integrated into the CS enabled it to chemically remove sulfuric acid vapor rather than rely on dilution to prevent nucleation.
Journal Article

Immersion Quenching Simulation of Realistic Cylinder Head Geometry

2014-04-01
2014-01-0641
In this paper, a recently improved Computational Fluid Dynamics (CFD) methodology for virtual prototyping of the heat treatment of cast aluminum parts, above most of cylinder heads of internal combustion engines (ICE), is presented. The comparison between measurement data and numerical results has been carried out to simulate the real time immersion quenching cooling process of realistic cylinder head structure using the commercial CFD code AVL FIRE®. The Eulerian multi-fluid modeling approach is used to handle the boiling flow and the heat transfer between the heated structure and the sub-cooled liquid. While for the fluid region governing equations are solved for each phase separately, only the energy equation is solved in the solid region. Heat transfer coefficients depend on the boiling regimes which are separated by the Leidenfrost temperature.
Journal Article

Improved Comfort Analysis and Drivability Assessment by the Use of an Extended Power Train Model for Automatic Transmissions

2012-06-13
2012-01-1529
The new generation of automatic transmissions is characterized by a compact and highly efficient design. By the use of a higher overall gear ratio and lightweight components combined with optimal gear set concepts it is possible to improve significantly fuel consumption and driving dynamics. Precise and efficient real time models of the whole power train including models for complex subsystems like the automatic transmission are needed to combine real hardware with virtual models on XiL test rigs. Thereby it's possible to achieve a more efficient product development process optimized towards low development costs by less needed prototypes and shorter development times by pushing front loading in the process. In this paper a new real time model for automatic transmissions including approved models for the torque converter, the lock-up clutch and the torsional damper are introduced. At the current development stage the model can be used for comfort analysis and drivability assessment.
Technical Paper

New Kinematic Design Methodology and Dynamic Simulation of Continuously Variable Valve Lift (CVVL) System

2010-04-12
2010-01-1202
Mechanical variable valve systems are being increasingly used for modern combustion engines. It is typical for such systems that the cam and valve are connected via intermediate levers. Different maximum valve lifts and duration can be achieved with the same cam profile. The intermediate levers increase the system inertia and reduce the overall stiffness. Such systems offer more flexibility, but it is more complex to create optimal design compared to the conventional systems. In this paper a new kinematic design methodology for a CVVL (Continuously Variable Valve Lift) system is presented. Additionally, dynamic analysis of the valve train system is performed. The investigated valve train is completely developed and patented by OEM. The main characteristic of the CVVL system is a set of intermediate levers between the cam and the finger follower like ( 1 , 2 ). One cam drives two intake valves over a set of levers.
Technical Paper

Influence of Low-Frequency Powertrain-Vibrations on Driveability-Assessments

2010-06-09
2010-01-1419
Cost- and time-efficient vehicle development is increasingly depending on the usage of adequate software tools to enhance effectiveness. The aim is a continuous integration of simulation tools and test environments within the vehicle development process in order to save time and costs. This paper introduces a procedure to reveal the cause of low-frequency powertrain vibrations and the influences on the dynamic behavior of a vehicle on a roller test bench. The affected longitudinal acceleration signal is an arbitrative criterion for the driveability assessment with AVL-DRIVE™, a well-known driveability analysis and development tool for the objective assessment concerning NVH and driveability aspects of full vehicles. These experimental studies are embedded into an approach, which describes the functional assembly of three applied test environments "road," "roller test bench" and "simulation" with according tools in order to facilitate an integrated driveability development process.
Technical Paper

Active Path Tracking - A Rapid Method for the Identification of Structure Borne Noise Paths in Vehicle Chassis

2001-04-30
2001-01-1470
The effective identification and control of powertrain structure borne harmonic noise is one key for achieving the desired noise pattern in a vehicle. Much work is being done in this field to refine and develop transfer path analysis techniques suitable for application at each stage of a vehicle development program. For vehicle application, transfer path analysis and source identification techniques are in use today with varying degrees of success and application complexity. Investigation tools which are fast, do not require extensive vehicle dismantling and yet provide reliable answers, are of great value to NVH and sound quality engineers. A novel Active Path Tracking (APT) method has been developed which is fast to apply and offers immediate practical confirmation of the contributions of all identified chassis transmission paths to the vehicle interior.
Technical Paper

An Update on Light Duty Diesel Technologies

2001-11-01
2001-28-0003
Light duty diesel vehicles continue to win recognition and market shares in Europe due to their convincing economy, reliability and driveability features. The diesel boom finds a fresh rationale in the CO2 emission legislation to come, however, the competitiveness of diesel cars may be impaired in future in consequence of the progression of the exhaust emission legislation and its impact on vehicle cost. This paper reviews the technologies currently pursued on the side of the engine and its subsystems, as well as the exhaust gas aftertreatment concepts required to satisfy the European legislation. An integral system approach is suggested, aiming at an optimum match of vehicle design parameters, transmission gear and the engine including aftertreatment elements and control.
Technical Paper

The 2-Step VCR Conrod System - Modular System for High Efficiency and Reduced CO2

2017-03-28
2017-01-0634
In order to achieve future CO2 targets - in particular under real driving conditions - different powertrain technologies will have to be introduced. Beside the increasing electrification of the powertrain, it will be essential to utilize the full potential of the internal combustion engine. In addition to further optimization of the combustion processes and the reduction of mechanical losses in the thermal- and energetic systems, the introduction of Variable Compression Ratio (VCR) is probably the measure with the highest potential for fuel economy improvement. VCR systems are expected to be introduced to a considerable number of next generation turbocharged Spark Ignited (SI) engines in certain vehicle classes. The basic principle of the AVL VCR system described in this paper is a 2-stage variation of the conrod length and thus the Compression Ratio (CR).
Technical Paper

Modeling of Reactive Spray Processes in DI Diesel Engines

2017-03-28
2017-01-0547
Commonly, the spray process in Direct Injection (DI) diesel engines is modeled with the Euler Lagrangian discrete droplet approach which has limited validity in the dense spray region, close to the injector nozzle hole exit. In the presented research, a new reactive spray modelling method has been developed and used within the 3D RANS CFD framework. The spray process was modelled with the Euler Eulerian multiphase approach, extended to the size-of-classes approach which ensures reliable interphase momentum transfer description. In this approach, both the gas and the discrete phase are considered as continuum, and divided into classes according to the ascending droplet diameter. The combustion process was modelled by taking into account chemical kinetics and by solving general gas phase reaction equations.
Technical Paper

Dynamic Substructuring for Sources Contributions Analysis in Internal Combustion Engines

2016-06-15
2016-01-1761
For vibration and acoustics vehicle development, one of the main challenges is the identification and the analysis of the noise sources, which is required in order to increase the driving comfort and to meet the stringent legislative requirements for the vehicle noise emission. Transfer Path Analysis (TPA) is a fairly well established technique for estimating and ranking individual low-frequency noise or vibration contributions via the different transmission paths. This technique is commonly applied on test measurements, based on prototypes, at the end of the design process. In order to apply such methodology already within the design process, a contribution analysis method based on dynamic substructuring of a multibody system is proposed with the aim of improving the quality of the design process for vehicle NVH assessment and to shorten development time and cost.
Technical Paper

Novel Shift Control without Clutch Slip in Hybrid Transmissions

2017-03-28
2017-01-1110
With the introduction of new regulations on emissions, fuel efficiency, driving cycles, etc. challenges for the powertrains are significantly increasing. In order to fulfil these regulations, hybrid-electric powertrains are an unquestioned option for short and long-term solutions. Hybridization however, is not only fulfilling these challenging efficiency or emission targets, but also allows numerous new possibilities on control strategies of different powertrain elements as well as new approaches of designing them. A good example is transmissions where, hybridization allows a new transmission type called Dedicated Hybrid Transmission (DHT), which enables to use novel control strategies bringing improved performance, driveability, durability and NVH behavior. This paper focuses on the novel shift strategy where friction clutches do not have to slip.
Technical Paper

Assessment of a Multi Zone Combustion Model for Analysis and Prediction of CI Engine Combustion and Emissions

2011-04-12
2011-01-1439
The paper describes a universally structured simulation platform which is used for the analysis and prediction of combustion in compression ignition (CI) engines. The models are on a zero-dimensional crank angle resolved basis as commonly used for engine cycle simulations. This platform represents a kind of thermodynamic framework which can be linked to single and multi zone combustion models. It is mainly used as work environment for the development and testing of new models which thereafter are implemented to other codes. One recent development task focused on a multi zone combustion model which corresponds to the approach of Hiroyasu. This model was taken from literature, extended with additional features described in this paper, and implemented into the thermodynamic simulation platform.
Technical Paper

Cylinder- and Cycle Resolved Particle Formation Evaluation to Support GDI Engine Development for Euro 6 Targets

2011-09-11
2011-24-0206
Combustion of premixed stoichiometric charge is free of soot particle formation. Consequently, the development of direct injection (DI) spark ignition (SI) engines aims at providing premixed charge to avoid or minimize soot formation in order to meet particle emissions targets. Engine development methods not only need precise engine-out particle measurement instrumentation but also sensors and measurement techniques which enable identification of in-cylinder soot formation sources under all relevant engine test conditions. Such identification is made possible by recording flame radiation signals and with analysis of such signals for premixed and diffusion flame signatures. This paper presents measurement techniques and analysis methods under normal engine and vehicle test procedures to minimize sooting combustion modes in transient engine operation.
Technical Paper

System Design Model for Parallel Hybrid Powertrains using Design of Experiments

2018-04-03
2018-01-0417
The paper focuses on an optimization methodology, which uses Design of Experiments (DoE) methods to define component parameters of parallel hybrid powertrains such as number of gears, transmission spread, gear ratios, progression factor, electric motor power, electric motor nominal speed, battery voltage and cell capacity. Target is to find the optimal configuration based on specific customer targets (e.g. fuel consumption, performance targets). In the method developed here, the hybrid drive train configuration and the combustion engine are considered as fixed components. The introduced methodology is able to reduce development time and to increase output quality of the early system definition phase. The output parameters are used as a first hint for subsequently performed detailed component development. The methodology integrates existing software tools like AVL CRUISE [5] and AVL CAMEO [1].
Technical Paper

Concepts for Mechanical Abuse Testing of High-Voltage Batteries

2012-04-16
2012-01-0124
Currently lithium-batteries are the most promising electrical-energy storage technology in fully-electric and hybrid vehicles. A crashworthy battery-design is among the numerous challenges development of electric-vehicles has to face. Besides of safe normal operation, the battery-design shall provide marginal threat to human health and environment in case of mechanical damage. Numerous mechanical abuse-tests were performed to identify load limits and the battery's response to damage. Cost-efficient testing is provided by taking into account that the battery-system's response to abuse might already be observed at a lower integration-level, not requiring testing of the entire pack. The most feasible tests and configurations were compiled and discussed. Adaptions of and additions to existing requirements and test-procedures as defined in standards are pointed out. Critical conditions that can occur during and after testing set new requirements to labs and test-rigs.
X