Refine Your Search

Topic

Author

Search Results

Journal Article

Comprehensive Array Measurements of In-Car Sound Field in Magnitude and Phase for Active Sound Generation and Noise Control

2014-06-30
2014-01-2046
When employing in-car active sound generation (ASG) and active noise cancellation (ANC), the accurate knowledge of the vehicle interior sound pressure distribution in magnitude as well as phase is paramount. Revisiting the ANC concept, relevant boundary conditions in spatial sound fields will be addressed. Moreover, within this study the controllability and observability requirements in case of ASG and ANC were examined in detail. This investigation focuses on sound pressure measurements using a 24 channel microphone array at different heights near the head of the driver. A shaker at the firewall and four loudspeakers of an ordinary in-car sound system have been investigated in order to compare their sound fields. Measurements have been done for different numbers of passengers, with and without a dummy head and real person on the driver seat. Transfer functions have been determined with a log-swept sine technique.
Technical Paper

An Integrated View on Automotive SPICE, Functional Safety and Cyber-Security

2020-04-14
2020-01-0145
The automotive domain has seen safety engineering at the forefront of the industry’s priorities for the last decade. Therefore, additional safety engineering efforts, design approaches, and well-established safety processes have been stipulated. Today many connected and automated vehicles are available and connectivity features and information sharing are increasingly used. This increases the attractiveness of an attack on vehicles and thus introduces new risks for vehicle cybersecurity. Thus, just as safety became a critical part of the development in the late 20th century, the automotive domain must now consider cybersecurity as an integral part of the development of modern vehicles. Aware of this fact, the automotive industry has, therefore, recently taken multiple efforts in designing and producing safe and secure connected and automated vehicles.
Technical Paper

Tool Based Calibration with the OBDmanager

2010-04-12
2010-01-0249
At the moment the documentation of failure inhibition matrices and the fault path management for different controller types and different vehicle projects are mainly maintained manually in individual Excel tables. This is not only time consuming but also gives a high potential for fault liability. In addition there is also no guarantee that the calibration of these failure inhibition matrices and its fault path really works. Conflicting aims between costs, time and fault liability require a new approach for the calibration, documentation and testing of failure inhibition matrices and the complete Diagnostic System Management (DSM) calibration. The standardization and harmonization of the Diagnostic System Management calibration for different calibration projects and derivates is the first step to reduce time and costs. Creating a master calibration for the conjoint fault paths and labels provides a significant reduction of efforts.
Technical Paper

A Software Tool for Noise Quality and Brand Sound Development

2001-04-30
2001-01-1573
For noise quality and brand sound design of passenger cars a unique software tool is currently used by our clients world-wide to evaluate and optimise the interior noise quality and brand sound aspects of passenger cars on an objective basis. The software tools AVL-VOICE and AVL-COMFORT are designed for the objective analysis of interior noise quality, for benchmarking, for the definition of noise quality targets and most important for effective vehicle sound engineering. With this tool, the target orientated implementation of the required interior noise quality or brand sound by predictable hardware modifications into passenger cars - for tailor made joy of driving - becomes feasible. The use of this tools is drastically reducing vehicle evaluation time and sound engineering effort when compared with traditional jury subjective evaluation methods and standard acoustic NVH optimisation procedures.
Technical Paper

Automated EMS Calibration using Objective Driveability Assessment and Computer Aided Optimization Methods

2002-03-04
2002-01-0849
Future demands regarding emissions, fuel consumption and driveability lead to complex engine and power train control systems. The calibration of the increasing number of free parameters in the ECU's contradicts the demand for reduced time in the power train development cycle. This paper will focus on the automatic, unmanned closed loop optimization of driveability quality on a high dynamic engine test bed. The collaboration of three advanced methods will be presented: Objective real time driveability assessment, to predict the expected feelings of the buyers of the car Automatic computer assisted variation of ECU parameters on the basis of statistical methods like design of experiments (DoE). Thus data are measured in an automated process allowing an optimization based on models (e.g. neural networks).
Technical Paper

SOURCE - A Stereophonic System for Engine and Vehicle Sound Recordings

2003-05-05
2003-01-1685
The subjectively perceived playback quality of conventional artificial head recordings does not fully comply with the original perception of engine and vehicle interior sound. There exist differences in subjective perception between different artificial heads and even between models of one supplier. Additionally, the listening situations are often judged unnatural. One important reason for these problems is the fact that the transfer function of an artificial head system is always different from the torso and the outer ear transfer function of a specific person. The neurological processing of a specific test person is not trained to the significantly different head related transfer functions of the conventional artificial heads. Especially the significant differences of the outer ear transfer functions between an artificial head and a specific test person are considered as a main reason for an unnatural playback quality.
Technical Paper

Vehicle Sound Engineering by Modifying Intake / Exhaust Orifice Noise Using Simulation Software

2003-05-05
2003-01-1686
Apart of other aspects, the interior sound of a passenger car brand has to meet customer expectations. For optimizing the sound of a passenger car, target sounds have first to be established via the operating range of the vehicle. For an effective sound engineering approach an objective description and evaluation of vehicle interior sound is beneficial. Such an objective description guarantees the effective and reproducible implementation of the required brand sound in the vehicle development process. In such a process it is necessary to reduce on the one hand annoying undesired noise aspects and to create on the other hand the relevant and necessary noise parameters to meet the target sounds head on.
Technical Paper

Nozzle Flow and Cavitation Modeling with Coupled 1D-3D AVL Software Tools

2011-09-11
2011-24-0006
The paper is devoted to the coupled 1D-3D modeling technology of injector flow and cavitation in diesel injections systems. The technology is based on the 1D simulation of the injector with the AVL software BOOST-HYDSIM and 3D modeling of the nozzle flow with AVL FIRE. The nozzle mesh with spray holes and certain part of the nozzle chamber is created with the FIRE preprocessor. The border between the 1D and 3D simulation regions can be chosen inside the nozzle chamber at any position along the needle shaft. Actual coupling version of both software tools considers only one-dimensional (longitudinal) needle motion. Forthcoming version already includes the two-dimensional motion of the needle. Furthermore, special models for the needle tip contact with the nozzle seat and needle guide contact with the nozzle wall are developed in HYDSIM. The co-simulation technology is applied for different common rail injectors in several projects.
Technical Paper

Diffusion Supporting Passive Filter Regeneration- A Modeling Contribution on Coated Filters

2018-04-03
2018-01-0957
Wall flow particulate filters have been used as a standard exhaust aftertreatment device for many years. The interaction of particulate matter (PM) regeneration and catalytically supported reactions strongly depends on the given operating conditions. Temperature, species concentration and mass flow cause a change from advective to diffusive-controlled flow conditions and influence the rate controlling dominance of individual reactions. A transient 1D+1D model is presented considering advective and diffusive transport phenomena. The reaction scheme focuses on passive PM conversion and catalytic oxidation of NO. The model is validated with analytical references. The impact of back-diffusion is explored simulating pure advective and combined advective diffusive species transport. Rate approaches from literature are applied to investigate PM conversion at various operating conditions.
Technical Paper

Methodology Development for Investigation and Optimization of Engine Starts in a HEV Powertrain

2022-03-29
2022-01-0484
The shift toward electrification and limitations in battery electric vehicle technology have led to high demand for hybrid vehicles (HEVs) that utilize a battery and an internal combustion engine (ICE) for propulsion. Although HEVs enable lower fuel consumption and emissions compared to conventional vehicles, they still require combustion of fuels for ICE operation. Thus, emissions from hybrid vehicles are still a major concern. Engine starts are a major source of emissions during any driving event, especially before the three-way catalyst (TWC) reaches its light-off temperature. Since the engine is subjected to multiple starts during most driving events, it is important to mitigate and better understand the impact of these emissions. In this study, experiments were conducted to analyze engine starts in a hybrid powertrain on different experimental setup.
Technical Paper

Durability Test Suite Optimization Based on Physics of Failure

2018-04-03
2018-01-0792
Dynamometer (dyno) durability testing plays a significant role in reliability and durability assessment of commercial engines. Frequently, durability test procedures are based on warranty history and corresponding component failure modes. Evolution of engine designs, operating conditions, electronic control features, and diagnostic limits have created challenges to historical-based testing approaches. A physics-based methodology, known as Load Matrix, is described to counteract these challenges. The technique, developed by AVL, is based on damage factor models for subsystem and component failure modes (e.g. fatigue, wear, degradation, deposits) and knowledge of customer duty cycles. By correlating dyno test to field conditions in quantifiable terms, such as customer equivalent miles, more effective and efficient durability test suites and test procedures can be utilized. To this end, application of Load Matrix to a heavy-duty diesel engine is presented.
Technical Paper

360° vs. 270° vs. 180°: The Difference of Balancing a 2 Cylinder Inline Engine: Design, Simulation, Comparative Measurements

2012-10-23
2012-32-0106
Beside the automotive industry, where 2-cylinder inline engines are catching attention again, twin-cylinder configurations are quite usual in the small engine world. From stationary engines and range-extender use to small motorcycles up to big cruisers and K-Cars this engine architecture is used in many types of applications. Because of very good overall packaging, performance characteristics and not least the possibility of parts-commonality with 4-cylinder engines nearly every motorcycle manufacturer provides an inline twin in its model range. Especially for motorcycle applications where generally the engine is a rigid member of the frame and vibrations can be transferred directly to the rider an appropriate balancing system is required.
Technical Paper

High Performance Linearization Procedure for Emission Analyzers

2000-03-06
2000-01-0798
Increasing requirements for the result quality of exhaust emission analyzers and state of the art analyzer technology require a new point of view regarding measuring range definitions and linearization procedures. To make best use of the power of this analyzer technology, linearization procedures need reconsideration. In certification laboratories, legislation defines the procedures to linearize an exhaust emission analyzer more or less stringently. On the other hand, on testbeds for development purposes there are many possibilities for making use of today's improved analyzers. However, procedures are often used in development labs that are very similar to those mentioned in the legislation. For some measurement purposes it is necessary to leave these procedures regarding measuring ranges and their specifications behind. The exhaust gas analyzing system has to provide consistent result quality during the whole test procedure.
Technical Paper

New Fuel Mass Flow Meter - A Modern and Reliable Approach to Continuous and Accurate Fuel Consumption Measurement

2000-03-06
2000-01-1330
Over the past few years, the fuel mass measurement gained in importance to record the consumed fuel mass and the specific fuel consumption [g/kWh] with high accuracy. Measuring instruments, such as positive displacement meters, methods based on the burette or the Wheatstone bridge mass flow meter measure either the volumetric flow and a temperature-dependant fuel density correction is necessary or they have old technology and therefore poor accuracy and repeatability. A new-generation Coriolis sensor featuring an ideal measurement range for engine test beds but still with flow depending pressure drop has been integrated in a fuel meter to ensure that no influence is given to the engine behaviour for example after engine load change. The new Coriolis meter offers better accuracy and repeatability, gas bubble venting and easy test bed integration. For returnless fuel injection systems the fuel system supplies the fuel pressure.
Technical Paper

Model-Based Approach for Engine Performance Optimization

2018-10-30
2018-32-0082
State-of-the-art motorcycle engines consist of numerous variable components and require a powerful motor management to meet the growing customer expectations and the legislative requirements (e.g. exhaust and noise emissions, fuel consumption) at the same time. These demands are often competing and raise the level of complexity in calibration. In the racing domain, the optimization requirements are usually higher and test efficiency is crucial. Whilst the number of variables to control is growing, the time to perform an engine optimization remains the same or is even shortened. Therefore, simulation is becoming an essential part of the engine calibration optimization. Considering the special circumstances in racing, involving valuable hardware, as well as extremely short development and calibration iteration loops, only transient testing is possible.
Technical Paper

Multi-Physics Simulation Model for Noise and Vibration Effects in Hybrid Vehicle Powertrain

2014-06-30
2014-01-2093
Over the past 30 years, simulation of the N&V (Noise and Vibration) behaviour of automotive drivelines became an integral part of the powertrain development process. With current and future HEVs (Hybrid-Electrical Vehicles), additional phenomena and effects have entered the scene and need to be taken into account during layout/design as well as optimization phase. Beside effects directly associated with the e-components (namely electric whistle and whine), torque changes caused by activation/deactivation of the e-machine give rise to vibration issues (e.g. driveline shuffle or clonk) as well. This is in particular true for transient operation conditions like boosting and recuperation. Moreover, aspects of starting the Internal Combustion Engine (ICE) using the built-in e-machine in conjunction with the dynamic behaviour of torsional decoupling devices become increasingly important. In order to cope with above-mentioned effects a multi-physics simulation approach is required.
Technical Paper

Generic software architecture for cost efficient powertrain electrification

2015-04-14
2015-01-1630
Hybrid-electric vehicles provide additional functionality compared to conventional vehicles. So-called ‘hybrid’ software functions are required to coordinate the conventional powertrain control and these additional control functions. A key factor to reduce the fuel consumption lies in optimal control of the entire interconnected powertrain. This paper aims to provide a framework for efficient interface definition, connection and coordination of control units for hybrid electric vehicles. Such a framework supports an efficient development of control unit architectures and the distribution of software functions. The generic approach necessitates modular software functions. It defines the distribution of these functions in control units optimized with respect to reuse, interfaces and compatibility with different powertrain topologies and electrification variants, especially also considering compatibility with a conventional powertrain and its electric hybridization.
Technical Paper

The OBD System Development Database - a Solution for Knowledge Management and Tool Supported Control System Design and Calibration

2014-04-01
2014-01-1171
The correct information about legal demands of the On-Board-Diagnostic (OBD) system in a vehicle project is required throughout the entire development process. Usually, the main obstacle in succeeding is to provide the company's expertise of some few experts for all employees who work in OBD related projects. The paper describes the AVL solution for knowledge management and tool supported control system design and calibration: OBD System Development Database. The software enables the user to access the regulatory requirements for a specific application and legislation from past, present and future (proposed rule-making) point of view. Information concerning already available and stored monitoring concepts is linked to the requirements in order to re-use potentially suitable concepts and to enable an efficient knowledge exchange within the company.
Technical Paper

A Versatile Approach for an ISO26262 Compliant Hardware-Software Interface Definition with Model-Based Development

2015-04-14
2015-01-0148
Increasing demands for safety, security, and certifiability of embedded automotive systems require additional development effort to generate the required evidences that the developed system can be trusted for the application and environment it is intended for. Safety standards such as ISO 26262 for road vehicles have been established to provide guidance during the development of safety-critical systems. The challenge in this context is to provide evidence of consistency, correctness, and completeness of system specifications over different work-products. One of these required work-products is the hardware-software interface (HSI) definition. This work-product is especially important since it defines the interfaces between different technologies. Model-based development (MBD) is a promising approach to support the description of the system under development in a more structured way, thus improving resulting consistency.
Journal Article

Tailored ADAS Functions Fulfilling Local Market Expectations - Time Saving Approach without Compromising the Performance Quality

2021-09-22
2021-26-0038
Modern safety and comfort features must behave country specific to the local environment and traffic conditions in order to gain end consumers’ trust and strengthening OEMs market success respectively. In order to achieve this, a new methodology was developed. In this paper, the approach for designing advanced driving assistance systems (ADAS) with a tailored controller behavior optimized for country specific market expectations like in India is described. Furthermore, the definition of objective performance and calibration targets with automated evaluation of target fulfillment will be deeply discussed. The method is focused on saving time at calibration and validation without compromising the quality of ADAS features. Local market specific driving behavior is investigated and measurement data from real-world driving collected. Data clustering via maneuver detection is performed automatically, which is saving time and effort.
X