Refine Your Search

Topic

Search Results

Viewing 1 to 17 of 17
Journal Article

Investigations on the Heat Transfer in a Single Cylinder Research SI Engine with Gasoline Direct Injection

2015-04-14
2015-01-0782
In this work, heat loss was investigated in homogeneous and stratified DI-SI operation mode in a single cylinder research engine. Several thermocouples were adapted to the combustion chamber surfaces. The crank angle resolved temperature oscillations at the cylinder head and piston surface could thereby be measured in homogeneous and stratified operation mode. A grasshopper linkage was designed and adapted to the engine, to transfer the piston signals to the data acquisition device. The design of the experimental apparatus is described briefly. For both operation modes the average steady-state temperatures of the combustion chamber surfaces were compared. The temperature distribution along the individual sensor positions at the cylinder head and piston surface are shown. Furthermore, the curves of the crank angle resolved temperature oscillations in stratified and homogeneous operation mode were compared.
Journal Article

Improved Modeling of Near-Wall Heat Transport for Cooling of Electric and Hybrid Powertrain Components by High Prandtl Number Flow

2017-03-28
2017-01-0621
Reynolds-averaged Navier-Stokes (RANS) computations of heat transfer involving wall bounded flows at elevated Prandtl numbers typically suffer from a lack of accuracy and/or increased mesh dependency. This can be often attributed to an improper near-wall turbulence modeling and the deficiency of the wall heat transfer models (based on the so called P-functions) that do not properly account for the variation of the turbulent Prandtl number in the wall proximity (y+< 5). As the conductive sub-layer gets significantly thinner than the viscous velocity sub-layer (for Pr >1), treatment of the thermal buffer layer gains importance as well. Various hybrid strategies utilize blending functions dependent on the molecular Prandtl number, which do not necessarily provide a smooth transition from the viscous/conductive sub-layer to the logarithmic region.
Journal Article

Thermal Characterization of a Li-ion Battery Module Cooled through Aluminum Heat-Sink Plates

2011-09-13
2011-01-2248
The temperature distribution is studied theoretically in a battery module stacked with 12 high-power Li-ion pouch cells. The module is cooled indirectly with ambient air through aluminum heat-sink plates or cooling plates sandwiched between each pair of cells in the module. Each of the cooling plates has an extended cooling fin exposed in the cooling air channel. The cell temperatures can be controlled by changing the air temperature and/or the heat transfer coefficient on the cooling fin surfaces by regulating the air flow rate. It is found that due to the high thermal conductivity and thermal diffusivity of the cooling plates, heat transfer of the cooling plate governs the cell temperature distribution by spreading the cell heat over the entire cell surface. Influence of thermal from the cooling fins is also simulated.
Journal Article

An Analysis of a Lithium-ion Battery System with Indirect Air Cooling and Warm-Up

2011-09-13
2011-01-2249
Ideal operation temperatures for Li-ion batteries fall in a narrow range from 20°C to 40°C. If the cell operation temperatures are too high, active materials in the cells may become thermally unstable. If the temperatures are too low, the resistance to lithium-ion transport in the cells may become very high, limiting the electrochemical reactions. Good battery thermal management is crucial to both the battery performance and life. Characteristics of various battery thermal management systems are reviewed. Analyses show that the advantages of direct and indirect air cooling systems are their simplicity and capability of cooling the cells in a battery pack at ambient temperatures up to 40°C. However, the disadvantages are their poor control of the cell-to-cell differential temperatures in the pack and their capability to dissipate high cell generations.
Journal Article

Thermal Analysis of a High-Power Lithium-Ion Battery System with Indirect Air Cooling

2012-04-16
2012-01-0333
Thermal behavior of a lithium-ion (Li-ion) battery module for hybrid electrical vehicle (HEV) applications is analyzed in this study. The module is stacked with 12 high-power pouch Li-ion battery cells. The cells are cooled indirectly with air through aluminum fins sandwiched between each two cells in the module, and each of the cooling fins has an extended cooling surface exposed in the cooling air flow channel. The cell temperatures are analyzed using a quasi-dimensional model under both the transient module load in a user-defined cycle for the battery system utilizations and an equivalent continuous load in the cycle. The cell thermal behavior is evaluated with the volume averaged cell temperature and the cell heat transfer is characterized with resistances for all thermal links in the heat transfer path from the cell to the cooling air. Simulations results are compared with measurements. Good agreement is observed between the simulated and measured cell temperatures.
Journal Article

A Thermodynamic Model for a Single Cylinder Engine with Its Intake/Exhaust Systems Simulating a Turbo-Charged V8 Diesel Engine

2011-04-12
2011-01-1149
In this paper, a thermodynamic model is discussed for a single cylinder diesel engine with its intake and exhaust systems simulating a turbo-charged V8 diesel engine. Following criteria are used in determination of the gas exchange systems of the single cylinder engine (SCE): 1) the level of pressure fluctuations in the intake and exhaust systems should be within the lower and upper bounds of those simulated by the thermodynamic model for the V8 engine and patterns of the pressure waves should be similar; 2) the intake and exhaust flows should be reasonably close to those of the V8 engine; 3) the cylinder pressures during the combustion and gas exchange should be reasonably close to those of the V8 engine under the same conditions for the valve timing, fuel injection, rate of heat release and in-cylinder heat transfer. The thermodynamic model for the SCE is developed using the 1D engine thermodynamic simulation tool AVL BOOST.
Journal Article

Characterizing Thermal Runaway of Lithium-ion Cells in a Battery System Using Finite Element Analysis Approach

2013-04-08
2013-01-1534
In this study, thermal runaway of a 3-cell Li-ion battery module is analyzed using a 3D finite-element-analysis (FEA) method. The module is stacked with three 70Ah lithium-nickel-manganese-cobalt (NMC) pouch cells and indirectly cooled with a liquid-cooled cold plate. Thermal runaway of the module is assumed to be triggered by the instantaneous increase of the middle cell temperature due to an abusive condition. The self-heating rate for the runaway cell is modeled on the basis of Accelerating Rate Calorimetry (ARC) test data. Thermal runaway of the battery module is simulated with and without cooling from the cold plate; with the latter representing a failed cooling system. Simulation results reveal that a minimum of 165°C for the middle cell is needed to trigger thermal runaway of the 3-cell module for cases with and without cold plate cooling.
Journal Article

Immersion Quenching Simulation of Realistic Cylinder Head Geometry

2014-04-01
2014-01-0641
In this paper, a recently improved Computational Fluid Dynamics (CFD) methodology for virtual prototyping of the heat treatment of cast aluminum parts, above most of cylinder heads of internal combustion engines (ICE), is presented. The comparison between measurement data and numerical results has been carried out to simulate the real time immersion quenching cooling process of realistic cylinder head structure using the commercial CFD code AVL FIRE®. The Eulerian multi-fluid modeling approach is used to handle the boiling flow and the heat transfer between the heated structure and the sub-cooled liquid. While for the fluid region governing equations are solved for each phase separately, only the energy equation is solved in the solid region. Heat transfer coefficients depend on the boiling regimes which are separated by the Leidenfrost temperature.
Technical Paper

Crank-Angle Resolved Real-Time Capable Engine and Vehicle Simulation - Fuel Consumption and Driving Performance

2010-04-12
2010-01-0784
The present work introduces a fully integrated real-time (RT) capable engine and vehicle model. The gas path and drive line are described in the time domain of seconds whereas the reciprocating characteristics of an IC engine are reflected by a crank angle resolved cylinder model. The RT engine model is derived from a high fidelity 1D cycle simulation and gas exchange model to support an efficient and consistent transfer of model data like geometries, heat transfer or combustion. The workflow of model calibration and application is outlined and base ECU functionalities for boost pressure, EGR, smoke and idle speed control are applied for transient engine operation. Steady state results of the RT engine model are compared to experimental data and 1D high fidelity simulations for 19 different engine load points. In addition an NEDC (New European Drive Cycle) is simulated and results are evaluated with data from chassis dynamometer measurements.
Technical Paper

A Rankine Cycle System for Recovering Waste Heat from HD Diesel Engines - WHR System Development

2011-04-12
2011-01-0311
Waste heat recovery (WHR) has been recognized as a promising technology to achieve the fuel economy and green house gas reduction goals for future heavy-duty (HD) truck diesel engines. A Rankine cycle system with ethanol as the working fluid was developed at AVL Powertrain Engineering, Inc. to investigate the fuel economy benefit from recovering waste heat from a 10.8L HD truck diesel engine. Thermodynamic analysis on this WHR system demonstrated that 5% fuel saving could be achievable. The fuel economy benefit can be further improved by optimizing the design of the WHR system components and through better utilization of the available engine waste heat. Although the WHR system was designed for a stand-alone system for the laboratory testing, all the heat exchangers were sized such that their heat transfer areas are equivalent to compact heat exchangers suitable for installation on a HD truck diesel engine.
Technical Paper

Impact of GHG-Phase II and Ultra Low NOx on the Base Powertrain

2017-05-10
2017-01-1925
With the implementation of EURO VI and similar emission legislation, the industry assumed the pace and stringency of new legislation would be reduced in the future. The latest announcements of proposed and implemented legislation steps show that future legislation will be even more stringent. The currently leading announced legislation, which concerns a large number of global manufacturers, is the legislation from the United States (US) Environmental Protection Agency (EPA) and the California Air Resources Board (CARB). Both announced new legislation for CO2, Greenhouse Gas (GHG) Phase II. CARB is also planning additional Ultra Low NOx regulations. Both regulations are significant and will require a number of technologies to be used in order to achieve the challenging limits. AVL published some engine related measures to address these legislation steps.
Technical Paper

Development of New I3 1.0L Turbocharged DI Gasoline Engine

2017-10-08
2017-01-2424
In recent years, more attentions have been paid to stringent legislations on fuel consumption and emissions. Turbocharged downsized gasoline direct injection (DI) engines are playing an increasing important role in OEM’s powertrain strategies and engine product portfolio. Dongfeng Motor (DFM) has developed a new 1.0 liter 3-cylinder Turbocharged gasoline DI (TGDI) engine (hereinafter referred to as C10TD) to meet the requirements of China 4th stage fuel consumption regulations and the China 6 emission standards. In this paper, the concept of the C10TD engine is explained to meet the powerful performance (torque 190Nm/1500-4500rpm and power 95kW/5500rpm), excellent part-load BSFC and NVH targets to ensure the drivers could enjoy the powerful output in quiet and comfortable environment without concerns about the fuel cost and pollution.
Technical Paper

A Simulation Approach for Vehicle Life-Time Thermal Analysis Applied to a HEV Battery System

2016-04-05
2016-01-0201
In order to meet current and future emission and CO2 targets, an efficient vehicle thermal management system is one of the key factors in conventional as well as in electrified powertrains. Global vehicle simulation is already a well-established tool to support the vehicle development process. In contrast to conventional vehicles, electrified powertrains offer an additional challenge to the thermal conditioning: the durability of E-components is not only influenced by temperature peaks but also by the duration and amplitude of temperature swings as well as temperature gradients within the components during their lifetime. Keeping all components always at the preferred lowest temperature level to avoid ageing under any conditions (driving, parking, etc.) will result in very high energy consumption which is in contradiction to the efficiency targets.
Technical Paper

Vehicle Thermal Management Simulation Method Integrated in the Development Process from Scratch to Prototype

2014-04-01
2014-01-0668
In order to meet current and future emission and CO2 targets, an efficient vehicle thermal management system is one of the key factors in conventional as well as in electrified powertrains. Furthermore the increasing number of vehicle configurations leads to a high variability and degrees of freedom in possible system designs and the control thereof, which can only be handled by a comprehensive tool chain of vehicle system simulation and a generic control system architecture. The required model must comprise all relevant systems of the vehicle (control functionality, cooling system, lubrication system, engine, drive train, HV components etc.). For proper prediction with respect to energy consumption all interactions and interdependencies of those systems have to be taken into consideration, i.e. all energy fluxes (mechanical, hydraulically, electrical, thermal) have to be exchanged among the system boundaries accordingly.
Technical Paper

Battery Thermal Management Simulation - 1D+1D Electrochemical Battery and 3D Module Modeling on Vehicle System Level

2021-04-06
2021-01-0757
Approaching engineering limits for the thermal design of battery modules requires virtual prototyping and appropriate models with respect to physical depth and computational effort. A multi-scale and multi-domain model describes the electrochemical behavior of a single battery unit cell in 1D+1D at the level of intra-cell phenomena, and it applies a 3D thermal model at module level. Both models are connected within a common vehicle simulation platform. The models are discussed with special emphasis on battery degradation such as solid electrolyte interphase layer formation, decomposition and lithium plating. The performance of the electrochemical model is assessed by discharge cycles and repeated charge/discharge simulations. The thermal module model is compared to CFD reference data and studied with respect to its grid sensitivity.
Technical Paper

Thermal Simulation of High-Speed EV Transmission Bearings for Minimum Lubricant Volume

2022-08-30
2022-01-1120
Minimizing the lubricant volume in a transmission system reduces the churning losses and overall unit costs. However, lubricant volume reduction is also detrimental to the thermal stability of the system. Transmission overheating can result in significant issues in the region of loaded contacts, risking severe surface/sub-surface damage in bearings and gears, as well as reduction in the lubricant quality through advanced oxidation and shear degradation. The increasing trend of electrified transmission input speeds raises the importance of understanding the thermal limits of the system at the envelope of the performance to ensure quality and reliability can be maintained, as well as being a key factor in the development, effecting internal housing features for the promotion of lubrication. A nodal bearing thermal model will be shown which utilizes thermal resistances and smooth particle based CFD for determining bearing lubricant feed rates during operation.
Journal Article

Towards Brand-Independent Architectures, Components and Systems for Next Generation Electrified Vehicles Optimised for the Infrastructure

2022-03-29
2022-01-0918
E-mobility is a game changer for the automotive domain. It promises significant reduction in terms of complexity and in terms of local emissions. With falling prices and recent technological advances, the second generation of electric vehicles (EVs) that is now in production makes electromobility an affordable and viable option for more and more transport mission (people, freight). Still, major challenges for large scale deployment remain. They include higher maturity with respect to performance (e.g., range, interaction with the grid), development efficiency (e.g., time-to-market), or production costs. Additionally, an important market transformation currently occurs with the co-development of automated driving functions, connectivity, mobility-as-a-service. New opportunities arise to customize road transportation systems toward application-driven, user-centric smart mobility solutions.
X