Refine Your Search

Topic

Author

Search Results

Journal Article

Sulfur Poisoning of a NOx Storage Catalyst - A Comprehensive Modelling Approach

2016-04-05
2016-01-0964
This paper describes the development of a 0-D-sulfur poisoning model for a NOx storage catalyst (NSC). The model was developed and calibrated using findings and data obtained from a passenger car diesel engine used on testbed. Based on an empirical approach, the developed model is able to predict not only the lower sulfur adsorption with increasing temperature and therefore the higher SOx (SO2 and SO3) slip after NSC, but also the sulfur saturation with increasing sulfur loading, resulting in a decrease of the sulfur adsorption rate with ongoing sulfation. Furthermore, the 0-D sulfur poisoning model was integrated into an existing 1-D NOx storage catalyst kinetic model. The combination of the two models results in an “EAS Model” (exhaust aftertreatment system) able to predict the deterioration of NOx-storage in a NSC with increasing sulfation level, exhibiting higher NOx-emissions after the NSC once it is poisoned.
Journal Article

High Performance Cooling and EGR Systems as a Contribution to Meeting Future Emission Standards

2008-04-14
2008-01-1199
In relation to further tightening of the emissions legislation for on-road heavy duty Diesel engines, the future potential of cooled exhaust gas recirculation (EGR) as a result of developments in the cooling systems of such engines has been evaluated. Four basic engine concepts were investigated: an engine with SCR exhaust gas aftertreatment for control of the nitrogen oxides (NOx), an engine with cooled EGR and particulate (PM) filtration, an engine with low pressure EGR and PM filtration and an engine with two stage low temperature cooled EGR also with a particulate filter. A 10.5 litre engine was calibrated and tested under conditions representative for each concept, such that 1.7 g/kWh (1.3 g/bhp-hr) NOx could be achieved over the ESC and ETC. This corresponds to emissions 15% below the Euro 5 legislation level.
Journal Article

Compact Engine Architecture for Best Fuel Efficiency and High Performance - Challenge or Contradiction

2011-11-08
2011-32-0595
The world of automotive engineering shows a clear direction for upcoming development trends. Stringent fleet average fuel consumption targets and CO2 penalties as well as rising fuel prices and the consumer demand to lower operating costs increases the engineering efforts to optimize fuel economy. Passenger car engines have the benefit of higher degree of technology which can be utilized to reach the challenging targets. Variable valve timing, downsizing and turbo charging, direct gasoline injection, highly sophisticated operating strategies and even more electrification are already common technologies in the automotive industry but can not be directly carried over into a motorcycle application. The major differences like very small packaging space, higher rated speeds, higher power density in combination with lower production numbers and product costs do not allow implementation such high of degree of advanced technology into small-engine applications.
Technical Paper

HD Base Engine Development to Meet Future Emission and Power Density Challenges of a DDI™ Engine

2007-10-30
2007-01-4225
This paper describes development challenges for Heavy-Duty (HD) on-highway Diesel Direct Injection (DDI™) engines to meet the extremely advanced US-EPA 2010 (later named US 2010) emission limits while further increasing power density in combination with competitive engine efficiency. It discusses technologies and solutions for lowest engine-out emissions in combination with most competitive fuel consumption values and excellent dynamic behavior. To achieve these challenging targets, base engine hardware requirements are described. In detail the development of EGR systems, especially the challenges of running high EGR rates over the whole engine speed range also at high load, the dynamic EGR control for transient engine operation to achieve lowest NOx emissions at the smoke limit with excellent load response is discussed. Also the effect of the turbo-machinery on power density and transient engine behavior is shown.
Technical Paper

The Challenge of Precise Characterizing the Specific Large-Span Flows in Urea Dosing Systems for NOx Reduction

2008-04-14
2008-01-1028
The reduction of nitrous oxides in the exhaust gases of internal combustion engines using a urea water solution is gaining more and more importance. While maintaining the future exhaust gas emission regulations, like the Euro 6 for passenger cars and the Euro 5 for commercial vehicles, urea dosing allows the engine management to be modified to improve fuel economy as well. The system manufacturer Robert Bosch has started early to develop the necessary dosing systems for the urea water solution. More than 300.000 Units have been delivered in 2007 for heavy duty applications. Typical dosing quantities for those systems are in the range of 0.01 l/h for passenger car systems and up to 10 l/h for commercial vehicles. During the first years of development and application of urea dosing systems, instantaneous flow measuring devices were used, which were not operating fully satisfactory.
Technical Paper

Simulation of Exhaust Gas Aftertreatment Systems - Thermal Behavior During Different Operating Conditions

2008-04-14
2008-01-0865
The introduction of more stringent standards for engine emissions requires continuous improvement of exhaust gas aftertreatment systems. Modern systems require a combined design and application of different aftertreatment devices. Computer simulation helps to investigate the complexity of different system layouts. This study presents an overall aftertreatment modeling framework comprising dedicated models for pipes, oxidation catalysts, wall flow particulate filters and selective catalytic converters. The model equations of all components are discussed. The individual behavior of all components is compared to experimental data. With these well calibrated models a simulation study on a DOC-DPF-SCR exhaust system is performed. The impact of pipe wall insulation on the overall NOx conversion performance is investigated during four different engine operating conditions taken from a heavy-duty drive cycle.
Technical Paper

CAE Process for Developing Cylinder Head Design Including Statistical Correlation and Shape Optimization

2010-04-12
2010-01-0494
Design of cylinder heads involves complex constraints that must satisfy thermal, strength, performance, and manufacturing requirements which present a great challenge for successful development. During development of a new highly loaded cylinder head, CAE methods predicted unacceptable fatigue safety factors for the initial prototype design. Hydropulsator component testing was undertaken and the results were correlated with the analysis predictions using a statistical method to calculate failure probability. Shape optimization was undertaken to improve high cycle fatigue safety in vulnerable regions of the cylinder head water jacket for the subsequent design release. The optimization process provided more efficient design guidance than previously discovered through a traditional iterative approach. Follow-on investigations examined other shape optimization software for fatigue improvement in the cylinder head.
Technical Paper

Impact of Future Exhaust Gas Emission Legislation on the Heavy Duty Truck Engine

2001-03-05
2001-01-0186
Emission standards as proposed in Europe and the United States for heavy duty diesel engines will require a NOx and particulate reduction of more than 90%. This cannot be achieved by internal engine measures alone. Aftertreatment systems, for either one or both emission components, plus sophisticated electronic control strategies will be required. Various strategies to comply with EU 4, 5 and US 2007 are discussed, also showing their impact on engine performance. For typical 1 and 2 liter per cylinder engines, emission reduction concepts are assessed to identify the most suitable technology for major worldwide markets. The assessment is based on thermodynamic studies, test-bed results and estimates on cost and infrastructure implications.
Technical Paper

Production Feasible DME Technology for Direct Injection CI Engines

2001-05-07
2001-01-2015
DiMethyl Ether (DME) has been shown to be a very attractive fuel for low emission direct injection compression ignition (DICI) engines. It combines the advantages of the high efficiencies of diesel cycle engines with soot free combustion. However, its greatest drawback is the need to develop new fuel injection and handling systems. Previous approaches have been common rail type injection systems which have shown great potential in reducing harmful exhaust emissions and achieving good engine performance and efficiency due to good control of both the fuel injection characteristics and temperature. The concept also has proven benefits with respect to convenient and safe fuel handling. The logical evolution of this concept simplifies the fuel system and avoids special components for DME handling such as high pressure rail pumps while retaining all the benefits of the common rail principle.
Technical Paper

New Physical and Chemical Models for the CFD Simulation of Exhaust Gas Lines: A Generic Approach

2002-03-04
2002-01-0066
In the near future the effort on the development of exhaust gas treatment systems must be increased to meet the stringent emission requirements. If the relevant physical and chemical models are available, the numerical simulation is an important tool for the design of these systems. This work presents a CFD model that allows to cover the full range of applications in this area. After a detailed presentation of the theoretical background and the modeling strategies results for the simulation of a close-coupled catalyst are shown. The presented model is also applied to the oxidation of nitrogen oxides, to a diesel particle filter and a fuel-cell reformer catalyst.
Technical Paper

Intelligent Simplification-Ways Towards Improved Fuel Economy

2002-03-04
2002-01-0236
A broad variety of new technologies for improving fuel economy is currently under development or investigation. The general statement is that always a compromise between fuel economy benefit and engine oncost has to be found. This paper describes a new way for improving fuel economy based on existing technologies used in a refined way. It is shown that with very simple and robust measures on the intake and exhaust ports and on the valve train mechanism 2 valve and 4 valve engines can show a significant improvement in fuel consumption without having a great cost penalty for production. The basic system consists of a single cam phaser and a special port arrangement on a 2 valve engine with a single camshaft operated at stoichiometric air/fuel ratio utilizing internal EGR and a reverse “Miller-Cycle”. Variable charge motion is generated using a shared flow through the intake and the exhaust port by varying cam timing.
Technical Paper

CSI - Controlled Auto Ignition - the Best Solution for the Fuel Consumption - Versus Emission Trade-Off?

2003-03-03
2003-01-0754
In recent years several new gasoline engine technologies were introduced in order to reduce fuel consumption. Controlled autoignition seems to be an alternative to stratified part load operation, which is handicapped due to it's lean aftertreatment system for world wide application. The principal advantages of controlled auto ignition combustion under steady state operation - combining fuel economy benefits similar to stratified charge systems with nearly negligible NOx and soot emissions - are already well known. With the newly developed AVL- CSI system (Compression and Spark Ignition), a precise combustion control is achieved even under transient operation. For compensation of production and operation tolerances a cost optimized cylinder individual control was developed. Completely new functionalities of the engine management system are applied. This lean GDI concept complies with future emission standards without DeNOx catalyst and can be applied worldwide.
Technical Paper

Catalytic Converters in a 1d Cycle Simulation Code Considering 3d Behavior

2003-03-03
2003-01-1002
The objective of this study to introduce the newly developed Discrete Channel Method (DCM) as a fast and efficient method for the prediction of the 3d and transient behavior of honeycomb-type catalytic converters in automotive applications. The approach is based on the assumption that the regions between the channels are treated as a reactor with a homogeneously distributed heat source due to chemical conversion. Therefore, each radial direction can be described by a center, a boundary and only a few intermediate channels between them. The discrete channels are described by transient, 1d conservation equations that characterize the behavior of channels at different radial positions. The heat entering and leaving each discrete channel is evaluated by the gradients of the temperature field in conjunction with the heat conductivity of the substrate. The approach is validated by experimental data and serves as a module in the thermodynamic and engine analysis design tool BOOST.
Technical Paper

Impact of GHG-Phase II and Ultra Low NOx on the Base Powertrain

2017-05-10
2017-01-1925
With the implementation of EURO VI and similar emission legislation, the industry assumed the pace and stringency of new legislation would be reduced in the future. The latest announcements of proposed and implemented legislation steps show that future legislation will be even more stringent. The currently leading announced legislation, which concerns a large number of global manufacturers, is the legislation from the United States (US) Environmental Protection Agency (EPA) and the California Air Resources Board (CARB). Both announced new legislation for CO2, Greenhouse Gas (GHG) Phase II. CARB is also planning additional Ultra Low NOx regulations. Both regulations are significant and will require a number of technologies to be used in order to achieve the challenging limits. AVL published some engine related measures to address these legislation steps.
Technical Paper

Combustion System Development of a High Performance and Fuel Efficient TGDI Engine Guided by CFD Simulation and Test

2017-10-08
2017-01-2282
A TGDI (turbocharged gasoline direct injection) engine is developed to realize both excellent fuel economy and high dynamic performance to guarantee fun-to-drive. In order to achieve this target, it is of great importance to develop a superior combustion system for the target engine. In this study, CFD simulation analysis, steady flow test and transparent engine test investigation are extensively conducted to ensure efficient and effective design. One dimensional thermodynamic simulation is firstly conducted to optimize controlling parameters for each representative engine operating condition, and the results serve as the input and boundary condition for the subsequent Three-dimensional CFD simulation. 3D CFD simulation is carried out to guide intake port design, which is then measured and verified on steady flow test bench.
Technical Paper

Highly Integrated Fuel Cell Analysis Infrastructure for Advanced Research Topics

2017-03-28
2017-01-1180
The limitation of global warming to less than 2 °C till the end of the century is regarded as the main challenge of our time. In order to meet COP21 objectives, a clear transition from carbon-based energy sources towards renewable and carbon-free energy carriers is mandatory. Polymer electrolyte membrane fuel cells (PEMFC) allow an energy-efficient, resource-efficient and emission-free conversion of regenerative produced hydrogen. For these reasons fuel cell technologies emerge in stationary, mobile and logistic applications with acceptable cruising ranges as well as short refueling times. In order to perform applied research in the area of PEMFC systems, a highly integrated fuel cell analysis infrastructure for systems up to 150 kW electric power was developed and established within a cooperative research project by HyCentA Research GmbH and AVL List GmbH in Graz, Austria. A novel open testing facility with hardware in the loop (HiL) capability is presented.
Technical Paper

Advanced Methods for Calibration and Validation of Diesel-ECU Models Using Emission and Fuel Consumption Optimization and Prediction During Dynamic Warm Up Tests (EDC)

2013-01-09
2013-26-0113
A calibration and validation workflow will be presented in this paper, which utilizes common static global models for fuel consumption, NOx and soot. Due to the applicability for warm-up tests, e.g. New European Driving Cycle (NEDC), the models need to predict the temperature influence and will be fitted with measuring data from a conditioned engine test bed. The applied model structure consisting of a number of global data-based sub-models is configured especially for the requirements of multi-injection strategies of common rail systems. Additionally common global models for several constant coolant water temperature levels are generated and the workflow tool supports the combination and segmentation of global nominal map with temperature correction maps for seamless and direct ECU setting.
Technical Paper

Combustion Analysis for In - Vehicle Application

2013-01-09
2013-26-0115
Traditional power train development work is concentrated mainly on test bed and on chassis dyno. Though we can simulate a lot of real world conditions on testbed and chassis dyno today, on road application work willis gaining more attention. This means that strategies and tools for invehicle testing under real world conditions are becoming more important. Emission, performance, fuel economy, combustion noise and driving comfort are linked to combustion quality, i.e. quality of fuel mixture preparation and flame propagation. The known testing and research equipment is only partly or not at all applicable for in-vehicle development work. New tools for on the road testing are required. Following, a general view on in-vehicle power train testing will be given. Additionally, new ways to investigate cylinder and cycle specific soot formation in GDI engines with fiber optic tools will be presented.
Technical Paper

LES Simulation of Flame Propagation in a Direct-Injection SI-Engine to Identify the Causes of Cycle-to-Cycle Combustion Variations

2013-04-08
2013-01-1084
A Large-Eddy-Simulation (LES) approach is applied to the calculation of multiple SI-engine cycles in order to study the causes of cycle-to-cycle combustion variations. The single-cylinder research engine adopted in the present study is equipped with direct fuel-injection and variable valve timing for both the intake and exhaust side. Operating conditions representing cases with considerably different scatter of the in-cylinder pressure traces are selected to investigate the causes of the cycle-to-cycle combustion variations. In the simulation the engine is represented by a coupled 1D/3D-CFD model, with the combustion chamber and the intake/exhaust ports modeled in 3D-CFD, and the intake/exhaust pipework set-up adopting a 1D-CFD approach. The adopted LES flow model is based upon the well-established Smagorinsky approach. Simulation of the fuel spray propagation process is based upon the discrete droplet model.
Technical Paper

Multi-Component Modeling of Diesel Fuel for Injection and Combustion Simulation

2013-09-08
2013-24-0007
Accurate simulation tools are needed for rapid and cost effective engine development in order to meet ever tighter pollutant regulations for future internal combustion engines. The formation of pollutants such as soot and NOx in Diesel engines is strongly influenced by local concentration of the reactants and local temperature in the combustion chamber. Therefore it is of great importance to model accurately the physics of the injection process, combustion and emission formation. It is common practice to approximate Diesel fuel as a single compound fuel for the simulation of the injection and combustion process. This is in many cases sufficient to predict the evolution of the in-cylinder pressure and heat release in the combustion chamber. The prediction of soot and NOx formation depends however on locally component resolved quantities related to the fuel liquid and gas phase as well as local temperature.
X