Refine Your Search

Topic

Author

Search Results

Journal Article

A Study on Operation Fluid Consumption for Heavy Duty Diesel Engine Application using both, EGR and SCR

2013-09-24
2013-01-2474
This paper describes a method for optimization of engine settings in view of best total cost of operation fluids. Under specific legal NOX tailpipe emissions requirements the engine out NOX can be matched to the current achievable SCR NOX conversion efficiency. In view of a heavy duty long haul truck application various specific engine operation modes are defined. A heavy duty diesel engine was calibrated for all operation modes in an engine test cell. The characteristics of engine operation are demonstrated in different transient test cycles. Optimum engine operation mode (EOM) selection strategies between individual engine operation modes are discussed in view of legal test cycles and real world driving cycles which have been derived from on-road tests.
Journal Article

Sulfur Poisoning of a NOx Storage Catalyst - A Comprehensive Modelling Approach

2016-04-05
2016-01-0964
This paper describes the development of a 0-D-sulfur poisoning model for a NOx storage catalyst (NSC). The model was developed and calibrated using findings and data obtained from a passenger car diesel engine used on testbed. Based on an empirical approach, the developed model is able to predict not only the lower sulfur adsorption with increasing temperature and therefore the higher SOx (SO2 and SO3) slip after NSC, but also the sulfur saturation with increasing sulfur loading, resulting in a decrease of the sulfur adsorption rate with ongoing sulfation. Furthermore, the 0-D sulfur poisoning model was integrated into an existing 1-D NOx storage catalyst kinetic model. The combination of the two models results in an “EAS Model” (exhaust aftertreatment system) able to predict the deterioration of NOx-storage in a NSC with increasing sulfation level, exhibiting higher NOx-emissions after the NSC once it is poisoned.
Journal Article

Compact Engine Architecture for Best Fuel Efficiency and High Performance - Challenge or Contradiction

2011-11-08
2011-32-0595
The world of automotive engineering shows a clear direction for upcoming development trends. Stringent fleet average fuel consumption targets and CO2 penalties as well as rising fuel prices and the consumer demand to lower operating costs increases the engineering efforts to optimize fuel economy. Passenger car engines have the benefit of higher degree of technology which can be utilized to reach the challenging targets. Variable valve timing, downsizing and turbo charging, direct gasoline injection, highly sophisticated operating strategies and even more electrification are already common technologies in the automotive industry but can not be directly carried over into a motorcycle application. The major differences like very small packaging space, higher rated speeds, higher power density in combination with lower production numbers and product costs do not allow implementation such high of degree of advanced technology into small-engine applications.
Technical Paper

The Application of a New Software Tool for Separating Engine Combustion and Mechanical Noise Excitation

2007-05-15
2007-01-2376
The optimization of engine NVH is still an important aspect for vehicle interior and exterior noise radiation. To optimize the engine noise / vibration contribution to the vehicle, a complete understanding of the excitation mechanism, the vibration transfer in the engine structure and the radiation efficiency of the individual engine components is required. Concerning the excitation within the engine, a very efficient analysis methodology for the combustion- and mechanical excitation within gasoline and diesel engines has been developed. Out of this methodology a software tool has been designed for a fast, efficient and detailed evaluation of the combustion- and mechanical excitation content of total engine noise. Recently this software tool has been successfully applied in engine NVH optimization work for defining the best optimization strategies for engine NVH reduction and noise quality improvement especially with respect to combustion excitation.
Technical Paper

Design impacts on CVS systems meeting future requirements for equivalent zero emissions vehicles

2000-06-12
2000-05-0347
The latest legislation requires a dramatic reduction of motor vehicle exhaust emission. This is also a big challenge for emission measurement instrumentation, because of almost zero concentrations of certain components in the exhaust. For current measurement devices, which are recommended by the legislation, it is almost impossible to determine such low emission levels with adequate accuracy. The paper describes a new Constant Volume Sampling (CVS) system with reduced dilution, warming and quick flow rate changing capability. Possible solutions are discussed and the properties of data measured with test facilities which are prepared to cover S-ULEV and EURO IV applications are described. Also the selection of used materials is of rising importance. The tests were performed on a dynamic engine test bed which was equipped with such a CVS system and with emission analyzing systems for raw exhaust and diluted measurements.
Technical Paper

Pass-By Noise Prediction for Trucks Based on Powertrain Test-Cell Measurements

2001-04-30
2001-01-1564
The paper outlines and discusses the possibilities of a new instrumentation tool for the analysis of engine and gearbox noise radiation and the prediction of pass-by noise from powertrain test cell measurements. Based on a 32 channel data acquisition board, the system is intended to be quick and easy to apply in order to support engineers during their daily work in the test cell. The pass-by prediction is a purely experimental approach with test cell recordings being weighted by measured transfer functions (from the powertrain compartment to the pass-by point).
Technical Paper

Combustion System Development of a High Performance and Fuel Efficient TGDI Engine Guided by CFD Simulation and Test

2017-10-08
2017-01-2282
A TGDI (turbocharged gasoline direct injection) engine is developed to realize both excellent fuel economy and high dynamic performance to guarantee fun-to-drive. In order to achieve this target, it is of great importance to develop a superior combustion system for the target engine. In this study, CFD simulation analysis, steady flow test and transparent engine test investigation are extensively conducted to ensure efficient and effective design. One dimensional thermodynamic simulation is firstly conducted to optimize controlling parameters for each representative engine operating condition, and the results serve as the input and boundary condition for the subsequent Three-dimensional CFD simulation. 3D CFD simulation is carried out to guide intake port design, which is then measured and verified on steady flow test bench.
Technical Paper

Highly Integrated Fuel Cell Analysis Infrastructure for Advanced Research Topics

2017-03-28
2017-01-1180
The limitation of global warming to less than 2 °C till the end of the century is regarded as the main challenge of our time. In order to meet COP21 objectives, a clear transition from carbon-based energy sources towards renewable and carbon-free energy carriers is mandatory. Polymer electrolyte membrane fuel cells (PEMFC) allow an energy-efficient, resource-efficient and emission-free conversion of regenerative produced hydrogen. For these reasons fuel cell technologies emerge in stationary, mobile and logistic applications with acceptable cruising ranges as well as short refueling times. In order to perform applied research in the area of PEMFC systems, a highly integrated fuel cell analysis infrastructure for systems up to 150 kW electric power was developed and established within a cooperative research project by HyCentA Research GmbH and AVL List GmbH in Graz, Austria. A novel open testing facility with hardware in the loop (HiL) capability is presented.
Technical Paper

Cylinder- and Cycle Resolved Particle Formation Evaluation to Support GDI Engine Development for Euro 6 Targets

2011-09-11
2011-24-0206
Combustion of premixed stoichiometric charge is free of soot particle formation. Consequently, the development of direct injection (DI) spark ignition (SI) engines aims at providing premixed charge to avoid or minimize soot formation in order to meet particle emissions targets. Engine development methods not only need precise engine-out particle measurement instrumentation but also sensors and measurement techniques which enable identification of in-cylinder soot formation sources under all relevant engine test conditions. Such identification is made possible by recording flame radiation signals and with analysis of such signals for premixed and diffusion flame signatures. This paper presents measurement techniques and analysis methods under normal engine and vehicle test procedures to minimize sooting combustion modes in transient engine operation.
Technical Paper

LES Simulation of Flame Propagation in a Direct-Injection SI-Engine to Identify the Causes of Cycle-to-Cycle Combustion Variations

2013-04-08
2013-01-1084
A Large-Eddy-Simulation (LES) approach is applied to the calculation of multiple SI-engine cycles in order to study the causes of cycle-to-cycle combustion variations. The single-cylinder research engine adopted in the present study is equipped with direct fuel-injection and variable valve timing for both the intake and exhaust side. Operating conditions representing cases with considerably different scatter of the in-cylinder pressure traces are selected to investigate the causes of the cycle-to-cycle combustion variations. In the simulation the engine is represented by a coupled 1D/3D-CFD model, with the combustion chamber and the intake/exhaust ports modeled in 3D-CFD, and the intake/exhaust pipework set-up adopting a 1D-CFD approach. The adopted LES flow model is based upon the well-established Smagorinsky approach. Simulation of the fuel spray propagation process is based upon the discrete droplet model.
Technical Paper

Multi-Component Modeling of Diesel Fuel for Injection and Combustion Simulation

2013-09-08
2013-24-0007
Accurate simulation tools are needed for rapid and cost effective engine development in order to meet ever tighter pollutant regulations for future internal combustion engines. The formation of pollutants such as soot and NOx in Diesel engines is strongly influenced by local concentration of the reactants and local temperature in the combustion chamber. Therefore it is of great importance to model accurately the physics of the injection process, combustion and emission formation. It is common practice to approximate Diesel fuel as a single compound fuel for the simulation of the injection and combustion process. This is in many cases sufficient to predict the evolution of the in-cylinder pressure and heat release in the combustion chamber. The prediction of soot and NOx formation depends however on locally component resolved quantities related to the fuel liquid and gas phase as well as local temperature.
Technical Paper

VVT+Port Deactivation Application on a Small Displacement SI 4 Cylinder 16V Engine: An Effective Way to Reduce Vehicle Fuel Consumption

2003-03-03
2003-01-0020
During recent years several VVT devices have been developed, in order to improve either peak power and low end torque, or part load fuel consumption of SI engines. This paper describes an experimental activity, concerning the integration of a continuously variable cam phaser (CVCP), together with an intake port deactivation device, on a small 4 cylinder 16V engine. The target was to achieve significantly lower fuel consumption under normal driving conditions, compared to a standard MPFI application. A single hydraulic cam phaser is used to shift both the intake and the exhaust cams to retarded positions, at constant overlap. Thus, high EGR rates in the combustion chamber and late intake valve closure (“reverse Miller cycle”) are combined, in order to reduce pumping losses at part load.
Technical Paper

A Tomographic Camera System for Combustion Diagnostics in SI Engines

1995-02-01
950681
In order to facilitate the analysis of SI engine combustion phenomena, we have developed a fiber optic system which allows the observation of combustion in essentially standard engines. Optical access to the combustion chamber is achieved with micro-optic elements and optical fibers in the cylinder head gasket. Each fiber views a narrow cone of the combustion chamber and transmits the light seen within this acceptance cone to the detector and recorder unit. A large number of such fiber optic detectors have been incorporated in a cylinder head gasket and this multichannel system was arranged in a geometric configuration which allowed the reconstruction of the spatial flame intensity distribution within the observed combustion chamber cross-section. The spatial information was gained from the line-of-sight intensity signals by means of a tomographic reconstruction technique.
Technical Paper

Flame Visualisation in Standard SI-Engines - Results of a Tomographic Combustion Analysis

1997-02-24
970870
An optical sensor system provides access to standard SI engine combustion chambers via the cylinder head gasket. Flame radiation within the plane of the gasket is observed with optical fibers which are arranged to allow the tomographic reconstruction of flame distribution. The effect of convective in-cylinder air motion generated by variations of inlet ports and combustion chamber geometries on flame propagation is directly visible. A high degree of correlation between flame intensity distribution and NOx emission levels yields a useful assessment of combustion chamber configurations with minimum emission levels. The location of knock centers is identified.
Technical Paper

A New Device for Transient Measurement of Ultralow Soot Emissions

2004-11-16
2004-01-3267
Future legislation, like EURO IV and EURO V or the US 2007 HD regulation will have massive reduction of particulate emission limits. For this beside improvement of engine combustion also exhaust aftertreatment systems are under investigation, like Diesel Particulate Filters (DPF), or Selective Catalytic Reduction (SCR) of Nitrogen Oxides. For all those tasks transient soot emission monitoring is one of the key features. To meet this demand a new device for the on-line measurement of soot emitted by combustion engines has been developed. Based on the photoacoustic principle, which has been optimized for automotive applications and easy use in test cells, the instrument shows a sensitivity of 5μg/m3, which is lower than current particulate immission standards in ambient air, and a time resolution of 1 sec. In the paper first the principles of measurement are shown, and then the specifications and results from measurements of very low soot concentration in the exhaust gas are presented.
Technical Paper

Evaluation of a New Design for CVS-Systems Meeting the Requirements of S-ULEV and EURO IV

2000-03-06
2000-01-0800
The latest legislation requires the automotive industry to once again reduce the emission levels of their latest vehicles. This leads to a new challenge in the field of emission measurement, because the concentrations of certain components of the exhaust gases are extremely low. For current measurement devices, which are recommended by the legislation, it is almost impossible to determine such low emission levels with the necessary accuracy. This study evaluates the features of an improved CVS system (Constant Volume Sampling) with the possibility of heating and the ability of changing flow rates quickly. Possible solutions are discussed and the properties of data measured with test facilities which are prepared to cover S-ULEV and EURO IV applications are described. The tests were performed on a dynamic engine test bed which was equipped with such a CVS system and with emission analyzing systems for raw exhaust and diluted measurements.
Technical Paper

A New 3D Model For Vaporizing Diesel Sprays Based on Mixing-Limited Vaporization

2000-03-06
2000-01-0949
Results from numerical computations performed to represent the transient behavior of vaporizing sprays injected into a constant volume chamber and into a High Speed Direct Injection combustion chamber are presented. In order to describe the liquid phase, a new model has been developed from ideas brought forward by recent experimental results (Siebers, 1999) and numerical considerations (Abraham, 1999). The liquid penetration length is given by a 1D model which has been validated on a large number of experiments. In the 3D calculation, break-up, vaporization, drag, collision and coalescence are not modeled. The mass, momentum and energy transfers from the liquid to the gas phase are imposed from the nozzle exit surface to the liquid penetration length. This model enables us to reach time step and grid-independent results. The gas penetrations obtained with the model are checked against experimental results in a constant volume chamber (Verhoeven et al., 1998).
Technical Paper

Heat Transfer to the Combustion Chamber and Port Walls of IC Engines - Measurement and Prediction

2000-03-06
2000-01-0568
This paper summarizes the results of several investigations on in-cylinder heat transfer during high-pressure and gas exchange phases as well as heat transfer in the inlet and outlet ports for a number of different engine types (DI Diesel, SI and gaseous fueled engine). The paper contains a comparision of simulation results and experimental data derived from heat flux measurements. Numerical results were obtained from zero-, one- and three-dimensional simulation methods. Time and spatially resolved heat fluxes were measured applying the surface temperature method and special heat flux sensors. The paper also includes an assessment of different sensor types with respect to accuracy and applicability.
Technical Paper

Automated Model-Based Calibration for Drivability Using a Virtual Engine Test Cell

2015-04-14
2015-01-1628
Increasing powertrain complexity and the growing number of vehicle variants are putting a strain on current calibration development processes. This is particularly challenging for vehicle drivability calibration, which is traditionally completed late in the development cycle, only after mature vehicle hardware is available. Model-based calibration enables a shift in development tasks from the real world to the virtual world, allowing for increased system robustness while reducing development costs and time. A unique approach for drivability calibration was developed by incorporating drivability analysis software with online optimization software into a virtual engine test cell environment. Real-time, physics-based engine and vehicle simulation models were coupled with real engine controller hardware and software to execute automated drivability calibration within this environment.
Technical Paper

Design of a Laboratory Sampling System for Brake Wear Particle Measurements

2022-09-19
2022-01-1179
Brake wear is one of the dominant sources of traffic-related particulate matter emissions and is associated with various adverse environmental and health hazards. To address this issue, the UNECE mandated the Particle Measurement Program to develop a harmonized methodology for sampling and measuring brake wear particles with a full-flow sampling tunnel on a brake dynamometer. Here we present the design of a novel, fully PMP compliant sampling tunnel. The dimensions and general layout of the tunnel are based on minimization of super-micron particle losses and consideration of space limitations in brake-dynamometer setups as well as the need for efficient utilization of the test facilities (reduced testing times). Numerical calculations suggested that the critical section of the system is the sampling train from the sample probes to the instrumentation inlet/filter holder.
X