Refine Your Search

Search Results

Viewing 1 to 4 of 4
Journal Article

A New Miniaturized Sensor for Ultra-Fast On-Board Soot Concentration Measurements

2017-03-28
2017-01-1008
In this article we present a design of a new miniaturized sensor with the capacity to measure exhaust particle concentrations on board vehicles and engines. The sensor is characterized by ultra-fast response time, high sensitivity, and a wide dynamic range. In addition, the physical dimensions of the sensor enable its placement along the exhaust line. The concentration response and temporal performance of a prototype sensor are discussed and characterized with aerosol laboratory test measurements. The sensor performance was also tested with actual engine exhaust in both chassis and engine dynamometer measurements. These measurements demonstrate that the sensor has the potential to meet and even exceed any requirements around the world in terms of on-board diagnostic (OBD) sensitivity and frequency of monitoring.
Journal Article

Measuring Automotive Exhaust Particles Down to 10 nm

2020-09-15
2020-01-2209
The latest generation of internal combustion engines may emit significant levels of sub-23 nm particles. The main objective of the Horizon 2020 “DownToTen” project was to develop a robust methodology and provide policy recommendations towards the particle number (PN) emissions measurements in the sub-23 nm region. In order to achieve this target, a new portable exhaust particle sampling system (PEPS) was developed, being capable of measuring exhaust particles down to at least 10 nm under real-world conditions. The main design target was to build a system that is compatible with current PMP requirements and is characterized by minimized losses in the sub-23 nm region, high robustness against artefacts and high flexibility in terms of different PN modes investigation, i.e. non-volatile, volatile and secondary particles.
Technical Paper

Exhaust Emission Toxicity Assessment for Two Different Modern Gasoline Vehicle Technologies

2023-08-28
2023-24-0117
Cellular exposure to diluted exhaust gas is a promising method to assess the adverse effects of road traffic on human health. To fully understand the potential correlation between emission patterns, vehicle technologies and cellular toxicity in real-world scenarios, further research is needed. This study evaluates the toxicity of exhaust emissions from two advanced technology vehicles in real-world driving conditions. One vehicle is a gasoline direct injection (GDI) with a particle filter (GPF), while the other is a gasoline port fuel injection (PFI) hybrid without a GPF. The vehicles were tested on a chassis dyno using a Real Driving Emissions (RDE) test cycle that replicates on-road conditions. The test cycle included both cold and hot starting engine conditions. Human epithelial A549 cells were exposed to diluted exhaust using an Air Liquid Interface (ALI) system to assess toxicity. Τhe particle dose during cell exposure simulated human inhalation in an urban environment.
Journal Article

A European Regulatory Perspective towards a Euro 7 Proposal

2022-06-14
2022-37-0032
The implementation of emission standards has brought significant reductions in vehicle emissions in the EU, but road transport is still a major source of air pollution. Future emission standards will aim at making road vehicles as clean as possible under a wide range of driving conditions and throughout their complete lifetime. The current paper presents the methodology followed by the Consortium for ultra LOw Vehicle Emissions (CLOVE) to support the preparation of the Euro 7 proposal. As a first step, the emission performance of the latest-technology vehicles under various driving conditions was evaluated. Towards this direction, an emissions database was developed, containing data from a wide range of tests, both within and beyond the current RDE boundaries.
X